SECTION I: GENERAL INFORMATION

Name of Permittee: Madison Metropolitan Sewerage District (MMSD), Nine Springs Wastewater Treatment Plant

Permit Number: WI 0024597-09

This is: the first permit issuance requiring implementation of a PMP/SRM.

Permit Effective Date: 05-01-2020

Date of First PMP/SRM: 05-24-2017

This variance is for: Chloride

Concentration targets:

- Chloride Weekly Avg 465 mg/l, November 1 through March 31 annually.
- Chloride Weekly Avg 430 mg/L, April 1 through October 31 annually.

SECTION II: SUMMARY OF POLLUTANT REDUCTION WORK DONE IN 2022

Summary of successes in 2022:

- Continued advancement of our data collection and analysis tools
- Wrap up of the Salt Savers pilot program and completion of associated report (attached)
- Procuring funding for Wisconsin Salt Wise and advancing Salt Wise statewide
- Significant media coverage to advance source reduction
- Robust new community outreach programs, including an artist residency and ‘water stewards’ program. Both programs stimulated conversations with new audiences and engaged dozens of local community members in action-oriented water protection work

<table>
<thead>
<tr>
<th>A. Actions to Identify Pollutant Sources</th>
<th>2022 Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Charge Sampling: Analyze user Charge Program samples for chloride. Evaluate the viability of adding chloride as a billing parameter.</td>
<td>In 2022, we continued assessment of a conductivity monitoring methodology at a pumping station. Using this equipment and method, while well studied in freshwater, natural environments, is to our knowledge innovative, and has not yet been tested in a wastewater setting. Extensive</td>
</tr>
</tbody>
</table>
data analysis to understand the viability of this method is underway and will continue into 2023. All pumping stations had daily chloride concentration samples tested again starting in December (see Attachment B).

| Road Salt Practices: Evaluate the current status and improvements through a re-survey of customer communities. | Customer communities are required by MMSD Sewer Use Ordinance, section 4.7.2, to report annually on their practices. In 2022, an automated filing system with the option for communities to submit online was put in place. We expect this system to improve reporting and minimize administrative time required to solicit, follow up, and track submittals. Summary of reporting from 2021-22 (to date) is included in Attachment E. |
| Baseline social-science survey: Study existing sources of chloride, and gather information specifically for development of future outreach strategies; measure awareness and attitudes; collect information about barriers to homeowner action through scientific survey. | Significant information was gained through running the Salt Savers Pilot program, including through >300 home softener Self-Screens taken, and through evaluation of the Salt Savers Pilot, thoroughly described in the report included as Attachment D. |

If any source is not controllable, please explain why.

Through the District’s Sewer Use Ordinance, owner communities are required to submit analytical results for chloride concentration in all their public drinking water wells. As of 2021, six wells in the District’s service area contain chloride concentrations greater than 100 mg/L. Four of those are >=150 mg/L. As the water is pumped out of the ground, before people ever touch it or it even gets to homes/businesses, is already at more than a quarter of the water quality standard the WWTP discharge permit is asked to meet. Data from wells in one community, show a trend of increasing concentration over 30 years:
This means independent of any source reduction efforts, the baseline for how much chloride is coming to the plant, just in the drinking water alone is on the rise. The municipal drinking water quality could be considered an ‘uncontrollable source’ because of the multitude of factors outside of any one entity’s control that influence the groundwater quality.

B. Actions to Minimize Pollutant Sources

<table>
<thead>
<tr>
<th>Administer training programs: SaltWise Soft Water Training; Winter Maintenance Training and develop/roll-out homeowner information and training program.</th>
<th>2022 Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 2022, District staff completed two SaltWise Soft Water Trainings focused on water softener salt reduction: 1) Plumber’s Union Local 75 Apprentices (Milwaukee & Madison) – Oct. 2022 2) Plumber’s Union Local 75 Members’ Annual Business Meeting (for CE Credits) – Oct. 2022</td>
<td>In 2022, WI Salt Wise Hosted >10 classes, reaching 237 individuals from >60 different organizations across the state, full summary of WI Salt Wise classes included in Attachment C: WI Salt Wise Activities Summary.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offer and expand salt-reduction rebate programs: simplify administration/quantification for programs, evaluate new or expanded programs to target specific markets.</th>
<th>2022 Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The final date for receiving a rebate as part of the Salt Savers Pilot was in June 2022. Evaluation was conducted through fall, and in the last few months of the year, staff worked to summarize the entirety of the pilot in a white paper, Attachment D. Based off of the findings from this pilot, the District will not likely scale a home softener incentive program to the entire service area. Repeating the incentive will only be approached cautiously if all other opportunities for reduction have been exhausted.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offer Road Salt Equipment Grants: Target private and municipal operations; Incentivize salt-reducing innovations and develop leaders in the ‘new normal;’ measure change in winter maintenance</th>
<th>2022 Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>There were two Road Salt Reduction Equipment Grants, issued in 2022, and two innovation grants (issued 2020-2021) completed during 2022. During 2023, we will be re-assessing</td>
<td></td>
</tr>
<tr>
<td>B. Actions to Minimize Pollutant Sources</td>
<td>2022 Actions</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>policy & practices through follow up to 2014 & 15 surveys.</td>
<td>Our approaches and testing alternatives aimed at stimulating the desirable actions.</td>
</tr>
<tr>
<td>Behavior Change Initiatives: Develop programs to change behavior/social norms with businesses and individuals; leverage WISaltWise to change behavior and social norms.</td>
<td>The district’s pollution prevention programs aim to change behaviors and norms. This year, we finalized and assessed the Salt Savers Program. In addition, we continue to lead and support the work of Wisconsin Salt Wise.</td>
</tr>
<tr>
<td>Capitalize on low-hanging fruit: Develop outreach kit; focus industrial contacts on chloride reduction opportunities; attend community events as appropriate, with emphasis on chloride information.</td>
<td>Beginning in 2020, the District worked with the Dane County Office of Energy & Climate Change to add water softener and water efficiency to the parameters for the water achievement category in the Dane County Climate Champions program, which has a business-focus. Several businesses recognized as champions included water softener optimization and upgrades as part of their reports. To reach motivated individuals, the district formed a local One-Water coalition with water utilities, storm water utility, and a local sustainability non-profit to develop and launch the Water Stewards class series. This program successfully reached people and businesses throughout our service area and will be repeated in 2023.</td>
</tr>
<tr>
<td>Expand digital presence: expand WiSaltWise.com/campaign and web resources (MMSD website, social media, videos)</td>
<td>District social media channels put a strong focus on salt-reduction messaging throughout 2022: salt messaging was featured in 78 organic and paid posts across 5 channels with a reach of over 28,356 accounts. In addition, the District’s 2022 artist/educator in residence began a One-Water focused Instagram account, @onewatermadison, and quickly built a following of >300. Because this channel was the voice of a well-respected community artist/educator vs. a government entity, it had an entirely different approach and tone, engaging a very different audience than traditional organizational social channels.</td>
</tr>
</tbody>
</table>

If any action was not implemented, please explain why.
<table>
<thead>
<tr>
<th>C. Maintenance of Source Reduction</th>
<th>2022 Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifications/Data Mining: analyze historic data; determine magnitude of previous reductions; develop estimates of and future viability.</td>
<td>This is an on-going project. The district continues obtaining monitoring data and developing tools to better assess trends in this data. The SaltSavers program assessment helped us hone in on the magnitude of contribution and controllability of household softening systems. One area that we have identified for 2023 work is to better asses the magnitude of contribution from commercial/industrial sources.</td>
</tr>
<tr>
<td>Cultivate relationships/leverage partnerships: leverage existing social networks, build new relationships with hotels/apartments/industry; continue to facilitate conversations between salt reduction champions and their peers; partner with sustainability focused programs in the region to identify and leverage synergies and speak in venues where our messages can reach broad audiences.</td>
<td>2022 marked a closer-to-normal speaking schedule as many events and opportunities began to resume following the pandemic. District staff spoke at numerous conferences including the US Water Alliance OneWater Summit, Keynotes at the Salt Symposium, and with the CSWEA Government Affairs Seminar. In 2022, a new formal partnership with Plumber’s Union, Local 75 Partnership was signed into agreement. This partnership is a huge opportunity to both train the 14,000 member plumbers across Southern Wisconsin, and to work together to codify salt-saving/water softener efficiency BMPs into the Local’s curriculum for apprentices. Salt reduction related content was included in e-newsletters sent by the district to leverage existing social networks. “Nine Springs News” is a new bi-monthly publication (beginning in March 2022), with about 760 subscribers. Notably, the September issue, in observance of National Pollution Prevention Week, included a full toolkit including pre-made social media posts, many of which were about salt reduction. This toolkit was also shared directly with the District’s owner communities & commissioners through a regular (9 editions in 2022) update e-newsletter sent from the Chief Engineer, as well as at one of the District’s quarterly owner community meetings in 2022. Having built capacity to regularly meet and communicate with owner communities in this way throughout 2022 will be important</td>
</tr>
<tr>
<td>C. Maintenance of Source Reduction</td>
<td>2022 Action</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>going forward as a possible opportunity to connect with owner communities about possible chloride source ID & reduction actions they could implement.</td>
<td></td>
</tr>
</tbody>
</table>

Communications: Develop and roll out videos/case studies and industry/large water user focused messages; target outreach and develop messaging.
Over the past year, Madison Metropolitan Sewerage District and Plumber's Union, Local 75 partnered to put together an episode on Building Wisconsin TV called "Being Salt Wise with Water Softeners". The content is all about water softeners - why it's important to work with professionals to upgrade them and keep them at top efficiency, and what happens downstream with sewer rates and in the environment if this issue is ignored for too long. The half-hour episode will air on WTMJ-TV4 NBC (Milwaukee) 5x, WKOW-TV27 ABC (Madison) 15x, and on TvW14 (Madison, prime time) 3x, in Q1 2023. The full episode is also available online any time on the [Building Wisconsin TV web site](https://buildingwisconsin.tv) and [Youtube channel](https://www.youtube.com/channel/UC...).

Wisconsin Salt Wise: undertake strategic planning to establish the future structure of Wisconsin Salt Wise.
WI Salt Wise secured a third grant from the Fund for Lake Michigan. This grant will support the coordinator position for the next two years. As of January 2023, this position will move from MMSD to be administratively housed at the Capital Area Regional Planning Commission which will allow for more regional and state-wide collaboration.

Funding and staffing: maintain on-going staffing and budget to support Chloride Source Reduction Program
All three full-time District staff dedicated to pollution prevention were maintained through 2022. The District generally grew capacity to handle administrative, communications and business services, which greatly benefitted pollution prevention/source reduction activities. We were able to add two pollution prevention interns for a few months of the year as well.

SECTION III: SUMMARY OF PROGRESS AND BARRIERS TO PMP EFFECTIVENESS

Average Pollutant Concentration in 2021: 384 mg/l
Average Pollutant Concentration in 2022: 388 mg/l
Variance pollutant concentration data over the last five years:

Have you encountered any barriers that have limited pollutant minimization program/source reduction measure effectiveness? If so, what adjustment will you make to the program during the next year to help address these barriers?

The main barrier, as reported in previous annual reports, remains the fact that as one wastewater treatment plant, can only do so much as far as changing long-held, pervasive norms, behaviors and attitudes. Encouraging voluntary actions within a limited geographic area (our service area) can only push against long-held industry standards, existing products, and beliefs so much.

Leveraging partnerships and supporting state-wide and nation-wide initiatives, such as the WI Salt Wise Partnership, the WI DNR Chloride Working Group, the Salt Symposium, Building Wisconsin TV, Plumbers Union Local 75 and the EPA Chloride Working Group, is one way we can push existing norms to change the status quo. By attempting to move the needle on a large scale, we will, by transitive property, also improve source reduction in MMSD’s service area as well. Efforts such as the Department now requiring MS4 permits to assess and report back on their winter maintenance processes/use of deicing chemicals and US EPA’s Chloride Clearinghouse are examples of state/national leadership are improving local authorities’ ability to track, manage/reduce pollution sources.

Within the District’s direct control, in addition to existing voluntary pollutant minimization initiatives we will continue evaluating policy options, such as ordinances, rules and requirements, to make chloride reduction more serious and urgent.

SECTION IV: PLANNED ACTIONS

<table>
<thead>
<tr>
<th>PMP Action</th>
<th>2023 Planned Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. Actions to Identify Pollutant Sources

<table>
<thead>
<tr>
<th>User Charge Sampling: Analyze user Charge Program samples for chloride. Evaluate the viability of adding chloride as a billing parameter.</th>
<th>Emphasis in this category will be on analysis for 2023. We will work with UW Statistics 678 Spring 2023 graduate student cohort and others to continue evaluating novel use of freshwater conductivity logger in wastewater environment. Development of a reliable, efficient methodology to capture, process and analyze data, yielding a reasonable approximation of chloride concentration at any given time and area in the collection system will help with understanding the feasibility and costs associated with adding chloride as a billing parameter. While there is no intent of doing this (adding chloride as a billing parameter) imminently, understanding whether it’s possible and what it takes will help evaluate this as an option. We continue to evolve our understanding of how to work with seasonal data, and expand our capacity to utilize programming languages to do so in a thorough and efficient manner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Salt Practices: Evaluate the current status and improvements through a re-survey of customer communities.</td>
<td>2023 will be the second full year for implementing an electronic reporting system to collect annual reporting information from customer communities on their chloride reduction activities. We will continue to improve the workflow for collecting this information and have scheduled a meeting in late Q1 with the vendor of the reporting software to improve the workflow.</td>
</tr>
<tr>
<td>Baseline social-science survey: Study existing sources of chloride, and gather information specifically for development of future outreach strategies; measure awareness and attitudes; collect information about barriers to homeowner action through scientific survey.</td>
<td>A survey that captures general utility knowledge, satisfaction, attitudes and awareness will be going out to a random sample of District service-area residents this year. This is a follow up to an effort initiated in 2019. The initial survey in 2019 was an opportunity to collect information about respondents’ awareness of their water softener, tolerance for hard water, and important information about water softener optimization participation willingness. The reiteration of this survey will likely afford similar opportunities to gather information that will prove useful in chloride source ID & reduction efforts.</td>
</tr>
</tbody>
</table>

B. Actions to Minimize Pollutant Sources
Administer training programs: SaltWise Soft Water Training; Winter Maintenance Training and develop/roll-out homeowner information and training program.

The WI Salt Wise Partnership will continue to offer Road Salt Reduction Training and Wednesday Webinar educational content throughout 2023 to reach winter maintenance professionals. A big focus for the Salt Wise Soft Water (water softener efficiency/salt reduction training) class will be working with Plumber’s Union Local 75 Training staff to redevelop and co-brand the class content. The goal of this is to begin merging the detailed content about minimizing water softener salt use, into the general curriculum for plumbing apprentices so that norms around softener use and set-up can gradually shift beyond the status quo. Working together to transition this class to a standard part of the Local 75 content will be a great opportunity for teaching the class better (able to utilize the full extent of the technologies available at their state of the art training facility), and reaching more apprentices annually. At least 4 classes, likely more, will be taught to apprentices throughout 2023 as the content is redeveloped and merged.

Offer and expand salt-reduction rebate programs: simplify administration/quantification for programs, evaluate new or expanded programs to target specific markets.

This year we will evaluate the potential for hiring an in-house softener expert. In both commercial facilities and homes, evaluating water softeners and knowing what steps to take to increase efficiency is not obvious for most people. Knowledge and skills to increase softener efficiency are definitely barriers, even for professionals at times. In 2023, we would like to explore if it would be possible to offer a 1-stop-shop softener expert advisor as a resource. The Community Based Social Marketing approach to behavior change recommends having a ‘non-divisible’, ‘end state’ ask for behavior change nudges to work. The messaging ‘call our expert’ would be simple, and no cost to advice-seekers. Having this expert being a government employee, softener owners might be more inclined to take their advice and recommendations vs. a sales person. Creating a softener expert resource would truly be an 'Easy' button for softening optimization or replacement.

Offer Road Salt Equipment Grants: Target private and municipal operations; Incentivize salt-reducing innovations and develop leaders in the ‘new normal;’ measure change in winter maintenance policy & practices through follow up to 2014 & 15 surveys.

During 2023, we will transition the Wisconsin Salt Wise program to a new organizational home. We will continue to support Wisconsin Salt Wise and winter maintenance policy and practice changes. The district will continue to work to assess barriers to further adoption of winter maintenance and determine if and how equipment grants could be morphed to be more effective in stimulating change.
Behavior Change Initiatives: Develop programs to change behavior/social norms with businesses and individuals; leverage WI SaltWise to change behavior and social norms.

We will be placing a large emphasis on exploring opportunities for utilizing/promoting use of soft water demand reduction strategies such as full-line to hot only conversions, blending valves and softener alternatives. This year, we will continue to work with Plumber’s Union, Local 75 training facility to track tests of new equipment and plumbing configurations that aid in minimizing softener salt use. We will also continue to encourage innovation, additional research and development in this area.

As of this report, District staff have begun discussing the use of blending valves to reduce the volume of water softened with a local softener company whose equipment includes this feature.

Capitalize on low-hanging fruit: Develop outreach kit; focus industrial contacts on chloride reduction opportunities; attend community events as appropriate, with emphasis on chloride information.

Synergy and timing continue to be critical to moving forward pollution minimization programs. In 2023, we are igniting our focus on industrial chloride reduction opportunities. Specific actions may include staff dedicated to working with larger salt users to assess opportunities for improvement. The on-going partnerships with Plumbers Local 75, Building Wisconsin TV program and the Water Stewards program will continue.

Expand digital presence: expand WiSaltWise.com/campaign and web resources (MMSD website, social media, videos)

This year we will undertake a comprehensive review of all existing collateral and public-facing salt-reduction resources (brochures/poster/hand-outs/kits), to update messaging, identify gaps in existing material. For example, reworking the hose-bibb test kit messaging, broadening the scope from only checking outdoor hose-bibbs, to instead, evaluating for full-line softening and guidance for considering a conversion to hot-only softening.

D. Maintenance of Source Reduction

Quantifications/Data Mining: analyze historic data; determine magnitude of previous reductions; develop estimates of and future viability.

We are working to refine our understanding of existing chloride data and analyze trends. In 2023, we have partnered with UW Statistics 678 Spring 2023 graduate student cohort to continue this process. We are also digging into the magnitude of commercial salt contribution. This was last estimated over 5-years ago. In addition, we identified a
D. Maintenance of Source Reduction

Cultivate relationships/leverage partnerships:	Throughout 2023, the District will engage with local and national organizations and experts. We will remain a Salt Wise Partner and will contribute staff to the Salt Symposium Planning Committee, CSWEA Government Affairs Planning Committee, and engage with EPA & DNR chloride working groups, networks with other wastewater treatment plants/water professionals and continue to be on the leadership team for the Water Stewards program. We believe that continuing to share the Building Wisconsin TV episode will help expand the demand for water softening improvements. We will continue to offer plumber training programs and work with the Union to expand their leadership to improve the efficiency of softening.
	variety of more permanent policy level options that could lead to sustained chloride reductions. We will assess the viability of implementation of these types of approaches during 2023.
Communications: Develop and roll out videos/case studies and industry/large water user focused messages; target outreach and develop messaging.	District staff will be reevaluating softener efficiency and salt reduction training materials and other resources to make them more understandable and accessible to their audiences. One goal the District has for salt reduction training is to encourage trusted entities, like the plumbers’ union, to adapt the training content as their own so there will be more instructors and opportunities to reach a wide audience of professionals that work with water softeners. Under a formal agreement with Plumber’s Union Local 75, staff will be working to integrate salt saving best practices covered in the Salt Wise Soft Water training into all training received by apprentices.
Wisconsin Salt Wise: undertake strategic planning to establish the future structure of Wisconsin Salt Wise.	As the WI Salt Wise Coordinator position transitions to formally working under the Capital Area Regional Planning Commission, the District will remain a key partner, attending regular check-in meetings and steering the WI Salt Wise agenda.
D. Maintenance of Source Reduction

| Funding and staffing: maintain on-going staffing and budget to support Chloride Source Reduction Program | Three full-time pollution prevention (P2) staff will be retained for 2023. Keeping an intern year-round has been budgeted for. The District will be hiring one new staff person for pretreatment administrative assistance who will be taking on some of the tasks that previously occupied pollution prevention staff time, freeing up capacity for P2 staff to dedicate more time to chloride activities. |

SECTION V: NOTES

Attachment A: MMSD Nine Springs Effluent Analysis
- Effluent Concentration
- Effluent Mass
- Comparison to Previous Years’ Data
- Seasonal Average Chloride Data
Attachment B: MMSD Collection System Data Analysis
Attachment C: WI Salt Wise Activities Summary
Attachment D: Salt Savers Summary
Attachment E: Summary of Sewer Use Ordinance Reporting 2021-22

SECTION VI: CERTIFICATION

I certify that the information contained in this document and all attachments were gathered and prepared under my supervision and based on inquiry of people directly under my supervision and that, to the best of my knowledge, the information is true, accurate and complete.

Authorized Representative Signature: ________________________________
Date of PMP Annual Report Submittal to WDNR: January 30, 2023
Attachment A: MMSD Nine Springs Effluent Analysis

The average of all daily combined effluent sample concentrations in 2022 was 388 mg/L
- Median: 386 mg/L
- Minimum: 297 mg/L
- Maximum: 475 mg/L

Compared to the past couple years, the annual average concentration for 2022 is high.

Similarly, comparing 2022 weekly average chloride concentrations vs. a five year average:

Weekly Average Chloride Concentration - 2022 vs. 5-year Average

Note: permit weeks do not include the 29, 30, or 31st of any month. The weeks are standardized for each month throughout the year as follows:
- week 1 = day 1-7, week 2 = day 8-14, week 3 = day 15-21, week 4 = day 22-28.
This is likely due to 2022 being an excessively dry year compared to previous years as can be seen in both of the graphs below:
However, when comparing average mass, both weekly and annual averages, considerably less chloride overall has passed through the treatment plant in 2022.

As you can see from the graph above, like concentration, mass is influenced by the weather- it is consistently higher during the heavy winter salting months (January – March).

Note- permit weeks do not include the 29, 30, or 31st of any month. The weeks are standardized for each month throughout the year as follows:
week 1 = day 1-7, week 2 = day 8-14, week 3 = day 15-21, week 4 = day 22-28.

As you can see from the graph above, like concentration, mass is influenced by the weather- it is consistently higher during the heavy winter salting months (January – March).
Overall, similar to what is exhibited in the weekly average graph, mass is going down over time (exhibited in annual comparison graphs below).
In the annual average graph above which tracks trends over 30+ years, there appears to be an inflection point in the mass graph above at the time that MMSD began a chloride source reduction program (2010). Even with increased service area (compared to other areas of the state, our service area is under significant development pressure), mass is beginning to decrease, which speaks to the success of the district’s chloride reduction program.

Yet, both the seasonal limits, and variance overall remain very important. For example, in 2022, there were two permit weeks where the average weekly concentration was still over 430 mg/L (both in the winter, when 465 mg/L limit was in place), and sixteen weeks where weekly average concentration exceeded 395 mg/L.
Attachment B: MMSD Collection System Data Analysis

A 7-year comparison of daily chloride concentrations December-March from the Five pumping stations that pump directly to Nine Springs are shown below. Further analysis, visualization and statistics on these data will be forthcoming in 2023.
Attachment C: WI Salt Wise Activities Summary
SEPTEMBER 2022

YTD Report

Wisconsin Salt Wise

Presented to Fund for Lake Michigan
Presented by Allison Madison
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Class Participants</td>
<td>4</td>
</tr>
<tr>
<td>Instructional Videos and PSAs</td>
<td>5</td>
</tr>
<tr>
<td>Wednesday Webinars</td>
<td>6</td>
</tr>
<tr>
<td>Media Coverage</td>
<td>7</td>
</tr>
<tr>
<td>Event Snapshots</td>
<td>9</td>
</tr>
<tr>
<td>Outreach Events</td>
<td>10</td>
</tr>
<tr>
<td>City of MKE Project Summary</td>
<td>11</td>
</tr>
<tr>
<td>New Resources</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

Tomorrow I fly to Colorado for the American Public Works Association Western Snow and Ice Conference and National Snow Roadeo. (Yes, they spell roadeo with an "a." You have to appreciate a good pun!) While I’m there, I’ll be giving two talks: "Salt Wise Cities" and "The Ecosystem Impacts of Road Salt." In October, I will co-host the Wisconsin DOT Winter Tech Talk and work with operators from across the state to identify and develop strategies to overcome barriers to change.

It’s incredible to reflect on the growth of WI Salt Wise over the last two years. We have grown from a local partnership into a statewide coalition with a reach stretching out across the United States and beyond. We are receiving requests to speak at statewide and national conferences, we have built strong connections with lead researchers in the field, and earlier this month we gave our first international interview with a reporter from the New Scientist.

Next week we kick off our fall training season with a calibration day co-hosted with the City of Green Bay. While making calls to invite municipalities to the Green Bay event, staff from a city that sits directly on the Lake Michigan shoreline shared that they don’t currently calibrate their salters. We’re thrilled that they have since registered their staff for this event.

Thank you again for the opportunity to build networks and promote smart salting practices that reduce damage to infrastructure and vegetation, cut operating budgets, and protect the long-term health of Lake Michigan and all its tributaries.

Allison Madison
CLASS PARTICIPANTS
237 individuals from 63 organizations

Municipalities: Appleton, Cedarburg, Cudahy, Germantown, Glendale, Greendale, Hales Corners, Madison, Mequon, Nashotah, North Prairie, Oconomowoc, Oregon, Paddock Lake, Pewaukee, Port Washington, Richfield, River Hills, Rothschild, Shorewood, Tomahawk, Vernon, Wales, Watertown, Waukesha, Waupun, Wauwatosa, West Allis, West Milwaukee, Wisconsin Rapids

Other Public: Kenosha County, Milwaukee County (Fleet, Highway, Parks, Forestry), Waukesha County, Washington County, Madison Water Utility, Milwaukee Area Technical College, Milwaukee Riverkeeper, UW-Madison, Wausau School District

Upcoming Events

Eight classes
Four open houses
Two calibration demos
Environmental Impacts, our first video, is available for viewing on the WI Salt Wise YouTube channel as well as the City of Milwaukee DPW’s About Snow and Ice Control Operations webpage. We will be rolling out the full video series to all City of Milwaukee staff during their in-house training in October.

The remaining videos and PSAs are currently in production:

- **Materials** - filmed
- **Mechanical Removal** - filmed
- **Pre-storm planning** - scripted
- **PSA 1** - scripted
- **PSA 2** - in development
WEDNESDAY WEBINARS

February: Water Softener Brine Reclamation
USDA Forest Products Lab Staff

March: American Family Insurance Tracks Salt Savings
Wayne Rayfield, Facilities Land Management Admin.

May: Brine: Facts and Myths
Matt Wittum, Town of Linn Highway Superintendent

June: A Salt Brine Field Study
Andi Bill, UW Traffic Operations and Safety Lab

July: Where have all the Mayflies gone?
Bob Miltner, Ohio EPA; Kevin Goodwin, Michigan EGLE

August: Direct Liquid Application
Bill Kern, Jefferson County Highway Department

September: Brine Blends
Matt Wittum, Town of Linn Highway Superintendent

October: Salt Wise Stories – De Pere
Tony Fietzer, City of De Pere

November: Salt Wise Stories – Eau Claire
Cory Tietz, City of Eau Claire

December: Legal and Policy Strategies for Chloride Management
Dave Strifling, Director of Marquette University’s Water and Law Policy Initiative
MEDIA COVERAGE

<table>
<thead>
<tr>
<th>TITLE</th>
<th>MEDIA OUTLET</th>
<th>MONTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess salt on roads, sidewalks showing up in our rivers, lakes</td>
<td>TMJ4 MKE</td>
<td>January</td>
</tr>
<tr>
<td>Newsmakers radio interview: Allison Madison, WI Salt Wise and Lewis Kuhlman, City of La Crosse</td>
<td>WPR</td>
<td>January</td>
</tr>
<tr>
<td>Wisconsin Salt Awareness Week reminds us: Salt is more dangerous than we realize</td>
<td>News18 Eau Claire</td>
<td>January</td>
</tr>
<tr>
<td>Chauncey's Great Outdoors radio interview: Shannon Haydin, WI DNR</td>
<td>ESPN 1000AM</td>
<td>January</td>
</tr>
<tr>
<td>Salt Pollution is on the Rise</td>
<td>TV6 Iron Mtn</td>
<td>January</td>
</tr>
<tr>
<td>DNR urges reduction in road salt</td>
<td>Watertown Times</td>
<td>January</td>
</tr>
<tr>
<td>WI DNR: Reduce Salt Use this Winter</td>
<td>Green Bay News Network</td>
<td>January</td>
</tr>
<tr>
<td>Wisconsin Salt Awareness Week</td>
<td>Isthmus</td>
<td>January</td>
</tr>
<tr>
<td>Root-Pike WIN celebrates Salt Awareness Week</td>
<td>The Journal Times</td>
<td>January</td>
</tr>
<tr>
<td>Wisconsin Salt Awareness Week goes virtual</td>
<td>Merrill Foto News</td>
<td>January</td>
</tr>
<tr>
<td>Wisconsin Salt Awareness Week: Recognizing the importance of salt usage</td>
<td>KBJR6 Superior/Duluth</td>
<td>January</td>
</tr>
</tbody>
</table>
Media Coverage

<table>
<thead>
<tr>
<th>Title</th>
<th>Media Outlet</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin Salt Awareness Week kicks off in La Crosse, around state</td>
<td>News 8000 La Crosse</td>
<td>January</td>
</tr>
<tr>
<td>Wisconsin Salt Awareness Week goes virtual</td>
<td>La Crosse Tribune</td>
<td>January</td>
</tr>
<tr>
<td>Waukesha County Executive Paul Farrow: Celebrates Wisconsin Salt Awareness Week with smart salting and free webinars</td>
<td>wispolitics.com</td>
<td>January</td>
</tr>
<tr>
<td>Wisconsin DNR: Learn how to reduce salt this winter</td>
<td>St. Croix 360</td>
<td>January</td>
</tr>
<tr>
<td>Road Salt is imperiling US waterways. States might have a solution.</td>
<td>Grist</td>
<td>March</td>
</tr>
<tr>
<td>Salt in the Wound: How Brine could curb damage tied to road salting</td>
<td>The Country Today</td>
<td>May</td>
</tr>
<tr>
<td>Help monitor the salt in our waters</td>
<td>Water Action Volunteers newsletter</td>
<td>June</td>
</tr>
<tr>
<td>Smart Salt Storage: Saving Money & The Environment</td>
<td>Ninja Deicer mailing</td>
<td>August</td>
</tr>
</tbody>
</table>
EVENT SNAPSHOTS
PHOTOS FROM 2022 OUTREACH EVENTS

Clockwise from upper left: Brown County Water Summit, Snow and Ice Management Association symposium tabling, Snow Plow Roadeo, Marquette Waterfront Festival
OUTREACH EVENTS

YTD AND UPCOMING EVENTS

Salt Awareness Week
- The Environmental Toll of Salt and Deciers
- We’re Salting our Drinking Water
- Water Softener Salt goes Where?
- Let’s Teach about Salt
- Salt Reduction Efforts across Wisconsin

Industry Presentations (and tabling*)
- Reinder’s Turf Conference
- Casper’s Brine Summit
- SIMA Snow and Ice Symposium*
- APWA Snow and Ice Conference
- Annual Public Works Expo*
- Wisconsin DOT Winter Tech Talk
- Wisconsin Construction, Municipal and Landscape Expo

Public Events
- Winter Fun and Outdoor Gear Demo
- Bark ‘n Brew
- Clean Lakes Circus
- Teejop Community Resource Fair
- Lake Wingra Watershed Gathering
- Fool’s Flotilla/Marquette Waterfront Fest

Outreach Presentations
- City of Oshkosh Sustainability Adv. Board
- UW-La Crosse Sustainability Club
- Fox-Wolf Watershed Conference
- Mississippi River Symposium
- UW-Arboretum Winter Webinar Series
- Viterbo Water Conference
- WI Society of Science Teachers Conference
- UW-Madison Badger Volunteers
- Brown County Water Summit
- WI Master Naturalist Conference
- UWSP American Water Resources Association
- Western Great Lakes Bird and Bat Observ.
CITY OF MILWAUKEE

Project Summary

We’ve forged strong relationships with City of Milwaukee staff within the Department of Public Works, the Mayor’s Office, and the Environmental Collaboration Office. Salt Wise practices are now promoted through the Mayor’s webpage and the ECO Neighborhood toolkit.

City of Milwaukee DPW staff have demonstrated a commitment to continuing education through participation at the APWA Winter Maintenance Supervisor’s Training, the Snow Plow Roadeo, Brine Summit, etc.

An evaluation and revision of their snow and ice policy is currently underway. Elected officials will be briefed later this fall and asked to support the communication of expectations to constituents.
NEW RESOURCES
EXAMPLES OF MATERIALS DEVELOPED IN 2022

Clockwise from upper left: Video and page from the Data Nugget lesson plan, UWGB success story for the EPA webpage, Salt Wise Milwaukee one-pager for City elected officials.
THANKS FOR YOUR CONTINUED SUPPORT!

allisonm@madsewer.org
608-334-8698
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-Jan</td>
<td>Winter Fun and Outdoor Gear Demo</td>
<td>Madison</td>
</tr>
<tr>
<td>22-Jan</td>
<td>Bark 'n Brew</td>
<td>Waukesha</td>
</tr>
<tr>
<td>24-Jan</td>
<td>The Environmental Toll of Salt and Deicers</td>
<td>Virtual</td>
</tr>
<tr>
<td>25-Jan</td>
<td>We're Salting our Drinking Water</td>
<td>Virtual</td>
</tr>
<tr>
<td>26-Jan</td>
<td>Water Softener Salt goes Where?</td>
<td>Virtual</td>
</tr>
<tr>
<td>27-Jan</td>
<td>Let's Teach about Salt</td>
<td>Virtual</td>
</tr>
<tr>
<td>28-Jan</td>
<td>Salt Reduction Efforts across Wisconsin</td>
<td>Virtual</td>
</tr>
<tr>
<td>3-Feb</td>
<td>Smart Salting for PLS</td>
<td>Virtual</td>
</tr>
<tr>
<td>7-Feb</td>
<td>Presentation to City of Oshkosh Sust. Adv. Board</td>
<td>Oshkosh - virtual</td>
</tr>
<tr>
<td>10-Feb</td>
<td>Smart Salting for WI Roads</td>
<td>Virtual</td>
</tr>
<tr>
<td>19-Feb</td>
<td>Clean Lakes Circus</td>
<td>Madison</td>
</tr>
<tr>
<td>1-Mar</td>
<td>UW-La Crosse Sustainability Club</td>
<td>La Crosse</td>
</tr>
<tr>
<td>8-Mar</td>
<td>Fox-Wolf Watershed Conference</td>
<td>Green Bay</td>
</tr>
<tr>
<td>8-Mar</td>
<td>Mississippi River Symposium</td>
<td>Virtual</td>
</tr>
<tr>
<td>9-Mar</td>
<td>Reinder's Turf Conference</td>
<td>Waukesha</td>
</tr>
<tr>
<td>17-Mar</td>
<td>UW-Arboretum Webinar</td>
<td>Virtual</td>
</tr>
<tr>
<td>23-Mar</td>
<td>Smart Salting for WI Roads</td>
<td>Virtual</td>
</tr>
<tr>
<td>25-Mar</td>
<td>Viterbo Water Conference</td>
<td>La Crosse</td>
</tr>
<tr>
<td>1-Mar</td>
<td>UW-La Crosse Sustainability Club</td>
<td>La Crosse</td>
</tr>
<tr>
<td>8-Mar</td>
<td>Fox-Wolf Watershed Conference</td>
<td>Green Bay</td>
</tr>
<tr>
<td>8-Mar</td>
<td>Mississippi River Symposium</td>
<td>Virtual</td>
</tr>
<tr>
<td>9-Mar</td>
<td>Reinder's Turf Conference</td>
<td>Waukesha</td>
</tr>
<tr>
<td>17-Mar</td>
<td>UW-Arboretum Webinar</td>
<td>Virtual</td>
</tr>
<tr>
<td>23-Mar</td>
<td>Smart Salting for WI Roads</td>
<td>Virtual</td>
</tr>
<tr>
<td>25-Mar</td>
<td>Viterbo Water Conference</td>
<td>La Crosse</td>
</tr>
<tr>
<td>April 7-8</td>
<td>WSST Exhibit</td>
<td>Wausau</td>
</tr>
<tr>
<td>20-Apr</td>
<td>Presentation to UW-Madison Badger Volunteers</td>
<td>Madison</td>
</tr>
<tr>
<td>27-Apr</td>
<td>Teejop Community Resource Fair</td>
<td>Madison</td>
</tr>
<tr>
<td>4-May</td>
<td>Webinar: Brine - Facts and Myths</td>
<td>Virtual</td>
</tr>
<tr>
<td>18-May</td>
<td>Casper's Equipment Expo</td>
<td>Appleton</td>
</tr>
<tr>
<td>21-May</td>
<td>Lake Wingra Watershed Gathering</td>
<td>Madison</td>
</tr>
<tr>
<td>1-Jun</td>
<td>Webinar: Salt Brine Field Study</td>
<td>Virtual</td>
</tr>
<tr>
<td>12-Jun</td>
<td>Fool's Flotilla/Marquette Waterfront Festival</td>
<td>Madison</td>
</tr>
<tr>
<td>14-Jun</td>
<td>Brown County Water Summit</td>
<td>Green Bay</td>
</tr>
<tr>
<td>June 23-24</td>
<td>SIMA Snow and Ice Symposium</td>
<td>Milwaukee - statewide audience</td>
</tr>
<tr>
<td>6-Jul</td>
<td>Webinar: A Salt Brine Field Study</td>
<td>Virtual</td>
</tr>
<tr>
<td>3-Aug</td>
<td>Webinar: Direct Liquid Application</td>
<td>Virtual</td>
</tr>
<tr>
<td>August 9-10</td>
<td>Snow Plow Roadeo</td>
<td>Appleton - statewide audience</td>
</tr>
<tr>
<td>28-Sept</td>
<td>The Environmental Impacts of Road Salt Pollution, APWA National Snow Plow Roadeo</td>
<td>Loveland, CO</td>
</tr>
<tr>
<td>30-Sept</td>
<td>Salt Wise Cities, APWA National Snow Plow Roadeo</td>
<td>Loveland, CO</td>
</tr>
<tr>
<td>4-Oct</td>
<td>Oconomowoc HS AP Env. Science and Global Issues presentations</td>
<td>Oconomowoc</td>
</tr>
<tr>
<td>5-Oct</td>
<td>Webinar: Salt Wise Success Stories - De Pere</td>
<td>Virtual</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
<td>Location</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>5-Oct</td>
<td>Green Bay Winter Spreader Calibration</td>
<td>Green Bay</td>
</tr>
<tr>
<td>6-Oct</td>
<td>WI Master Naturalist Conference</td>
<td>Waukesha</td>
</tr>
<tr>
<td></td>
<td>Oconomowoc School District staff training</td>
<td>Oconomowoc</td>
</tr>
<tr>
<td>10-Oct</td>
<td>Presentation to UWSP AWRA and SGA</td>
<td>Stevens Point</td>
</tr>
<tr>
<td>11-Oct</td>
<td>Stevens Point Open House</td>
<td>Stevens Point</td>
</tr>
<tr>
<td>12-Oct</td>
<td>WisDOT Winter Tech Talk</td>
<td>Eau Claire</td>
</tr>
<tr>
<td></td>
<td>Fond du Lac Municipal Staff training</td>
<td>Fond du Lac</td>
</tr>
<tr>
<td>19-Oct</td>
<td>Presentation to UW-La Crosse Student Senate</td>
<td>La Crosse</td>
</tr>
<tr>
<td>20-Oct</td>
<td>League of WI Municipalities Fall Conference tabling</td>
<td>La Crosse</td>
</tr>
<tr>
<td>25-Oct</td>
<td>Smart Salting for WI Roads</td>
<td>Virtual</td>
</tr>
<tr>
<td>26-Oct</td>
<td>Smart Salting for WI Roads</td>
<td>Elkhorn</td>
</tr>
<tr>
<td>27-Oct</td>
<td>Smart Salting for WI Roads</td>
<td>Elkhorn</td>
</tr>
<tr>
<td>28-Oct</td>
<td>Smart Salting mini-training and Open House</td>
<td>Wausau</td>
</tr>
<tr>
<td>1-Nov</td>
<td>UW-Whitewater/City of Whitewater Open House</td>
<td>Whitewater</td>
</tr>
<tr>
<td>2-Nov</td>
<td>Smart Salting for Parking Lots and Sidewalks</td>
<td>Stoughton</td>
</tr>
<tr>
<td>3-Nov</td>
<td>Wisconsin Construction, Municipal, and Landscape Expo</td>
<td>Milwaukee</td>
</tr>
<tr>
<td>9-Nov</td>
<td>Webinar: Salt Wise Success Stories - Eau Claire</td>
<td>Virtual</td>
</tr>
<tr>
<td>9-Nov</td>
<td>City of MKE Driver Training</td>
<td>Milwaukee</td>
</tr>
<tr>
<td>10-Nov</td>
<td>City of MKE Driver Training</td>
<td>Milwaukee</td>
</tr>
<tr>
<td>29-Nov</td>
<td>Smart Salting for WI Roads</td>
<td>Virtual</td>
</tr>
<tr>
<td>8-Dec</td>
<td>Smart Salting for Parking Lots and Sidewalks</td>
<td>Virtual</td>
</tr>
<tr>
<td>14-Dec</td>
<td>Webinar: Legal and Policy Strategies for Chloride Management</td>
<td>Virtual</td>
</tr>
</tbody>
</table>
Attachment D: Salt Savers Report
ACKNOWLEDGEMENTS

We would like to acknowledge the support of all project partners, without whom this project would not have been possible.

Special thanks to:

- Participating service providers,
- Cooperating household participants,
- The WI Salt Wise Partnership (Alison Madison, coordinator),
- Municipal Partners (Village of McFarland - Aimee Irwin, Assistant to the Public Works Director & Jim Hessling, Public Works Director; Town of Dunn – Cathy Hasslinger, Clerk-Treasurer/Business Manager & Kelsey Shepperd, Administrative Coordinator)
- the myriad data scientists who have touched this project in some way (Steve Corsi, U.S. Geological Survey Research Hydrologist; Ruoran Laura Huang, UW WISCERS Honor Program; Steven Moen & Nathan Aviles UW Statistics Ph.D/teaching assistants)

And to employees across the Madison Metropolitan Sewerage District, in nearly every department, for all the support they have given throughout the project. From leadership, monitoring and sample collection to IT support, GIS services, sample analysis and advertisements, this project has exemplified that when our diverse skills come together for a common goal, we truly are #StrongerTogether.

Most sincere thanks and appreciation to all who contributed to this endeavor.
TABLE OF CONTENTS

Acknowledgements .. 2

Executive Summary ... 6

Background ... 6

Pilot Approach .. 6

Results ... 6

Conclusion & Recommendations .. 7

Background ... 8

MMSD Chloride Initiative .. 8

Previous Studies .. 9

Salt Savers Pilot Program .. 10

Overview ... 10

Pilot Area - Pumping Station 09 (ps9) Service Area .. 11

Past PS 9 Area Work .. 12

Workflow .. 13

Design ... 14

Anticipated Barriers .. 14

Funding ... 16

Incentives .. 16

Service Provider Training .. 18

Softener Evaluation & Optimization Process Development ... 18

Training Content ... 19

Training Attendance & Certification ... 19

GIS Tools ... 20

Reporting ... 21

Dashboards for Program Management .. 22

Program Promotion Messaging .. 22

Evaluation ... 22

Qualitative ... 22

Monitoring .. 23
Executive Summary

Background
Utility managers at a Southern Wisconsin treatment plant are seeking influent source reductions to meet stringent water quality standards for chloride in plant effluent. The largest direct source of chloride influent to the plant is cumulatively, >100,000 individual water softeners (Madison Water Utility, 2012-2014) (AECOM, 2015) present in homes throughout the service area. This study builds off previous research that establish estimates for average daily discharge from home softeners, and potential discharge reductions associated with various interventions (Lake, Erickson & Cantor, 2015), to develop and test administration of municipally administered home softener optimization/upgrade rebate program.

Pilot Approach
The Salt Savers program was launched in 2019 in a small, primarily residential area within the Madison Metropolitan Sewerage District to pilot a home softener rebate program and study the impacts on wastewater. Primary goals of the geographically focused pilot include:

1. Training service providers, shift business norms to include softener optimizations
2. Engage municipalities to lead on source reduction
3. Test methods for administration, outreach/promotion of program
4. Determine costs associated with running program

To address these goals, the District developed a water softener training class for providers (mostly plumbers), that establishes a standard water softener inspection procedure and best practices for softener salt optimization. Service providers trained through the program inspected area softeners and optimized, or made other recommendations for further service/upgrade. Partnering municipalities in the pilot area reviewed documentation from these inspections, and issued incentive payments for qualifying services. The pilot used an interconnected GIS web infrastructure to support coordinated, real-time communication and documentation between providers, municipal administrators of the program and the district. Throughout the programs’ duration, various forms of advertisement/outreach were tested and wastewater was monitored.

Results
The pilot program was active in totality from March 2020-June 2022. During this time both a rebate program to support softener upgrade and optimization, and a home-softener-self-diagnostic tool were launched in partnership with municipalities in the pilot area. By the conclusion of the program, 334 self screens were submitted, and 229 rebates were issued. Rebates were issued to 210 addresses, representing about 5% of single family homes in the PS09 service area. About two thirds of rebates issued were for water softener upgrade (67% of rebates were for replacements). About 18% of rebates were issued for an estimate/recommendation inspection, and 15% of rebates issued were for optimization. The direct wastewater chloride reduction as a result of rebate interventions is estimated at 45 pounds of chloride per
day. In total, the program cost about $334,000, meaning this source reduction approach cost about $7,420/pound of chloride per day reduced (or $4,423/pound of salt/day).

Conclusion & Recommendations
This pilot catalyzed development of a number of important partnerships and tools that will outlast the pilot, and continue to be useful in the future. Development of a municipally administered rebate incentive was found to be feasible, however the overall cost per pound of chloride reduced for this project proved to be higher than other previously tested incentive programs. Even within a small pilot area, the reach for this program, however was small. Scaling this pilot to offer rebates more widely should be approached cautiously, as should investment generally in any incremental, temporary chloride reduction. Although the pilot did not yield sufficient chloride reduction to observe at the tributary pumping station, it did uncover opportunity for possible strategies or future directions for reducing salt use from home-water softeners via soft water reduction strategies.
BACKGROUND

MMSD Chloride Initiative

The Madison Metropolitan Sewerage District (MMSD or, ‘the District’) provides wastewater collection and treatment services to approximately 350,000 people, businesses and institutions in the Greater Madison, Wisconsin area. At the district’s sole wastewater treatment plant, Nine Springs Wastewater Treatment Plant (NSWTP), an average of 40-million gallons of wastewater are received and treated each day. NSWTP provides high-level treatment, but, as is typical for modern wastewater treatment plants, does not remove dissolved solids like salt. The district is required by the Wisconsin Pollutant Discharge Elimination System (WPDES) permit (issued by the Wisconsin Department of Natural Resources), to meet criteria for effluent discharge, including for chloride. For NSWTP effluent to reliably meet the criteria for chloride in a sustainable and cost-effective manner, the district is undertaking a source reduction initiative targeted at lowering both the concentration and mass influent to the plant by working with ‘upstream’ sources.

Sources of salt influent to the plant were estimated in previous studies published by the district (AECOM, 2015). The major direct source is ion exchange water softeners. Water softeners are pervasive in nearly all buildings, in the area due to very hard groundwater. In total, it’s estimated that they contribute, on average, 80,500 lbs of the total 140,000 lbs of chloride (57.5%) influent to the treatment plant per day (AECOM, 2015).

Although softeners are common across nearly all building uses/types- residential, commercial, industrial, institutional, different use patterns, water quality needs, and ownership type, lend to different scales (size of softener, comprehensiveness of softening), different decision-making hierarchies, barriers to action, risk tolerance, motivations, and financial situations. As such, the district’s source reduction initiative has evolved to address each ‘sector’ of softening with unique programs.

Of the influent softening sources, single-family residential softening is estimated to be one of the largest, while also the most diffuse source. Of chloride influent to the treatment plant from softeners, an estimated 60% of that, or nearly 50,000 pounds per day, comes from single family houses in the district’s service area (Lake, Erickson, & Cantor, 2015). In addition to calculations indicating home softeners as a major direct contributing source, collection system sampling initiatives have confirmed high influent chloride levels from residential areas (respective to plant influent generally) (Table 1).

<table>
<thead>
<tr>
<th>Approximate Weekly Avg. Comparison*</th>
<th>PS 09 Average Concentration from User Charge Composite Samples (in Mg/L)</th>
<th>Combined Plant Effluent Average Concentration (in Mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/31/14-8/6/14</td>
<td>463</td>
<td>392</td>
</tr>
<tr>
<td>10/3/14-10/8/14</td>
<td>489</td>
<td>408</td>
</tr>
<tr>
<td>5/16/17-5/22/17</td>
<td>451</td>
<td>365</td>
</tr>
<tr>
<td>7/24/17-7/29/17</td>
<td>424</td>
<td>343</td>
</tr>
<tr>
<td>5/17/19-5/23/19</td>
<td>409</td>
<td>347</td>
</tr>
</tbody>
</table>
PREVIOUS STUDIES
The 2015 Paired Sewershed Study by Lake, Erickson, & Cantor, established two methods for reducing home softener chloride discharge using currently available technology: optimization & replacement. These methods were shown on average to reduce household chloride discharge on average 27% (optimization) and 48% (replacement). What’s more, this study also showed that people were actually willing to take these actions; 88% of homes in the replacement area, and 48% of homes in the optimization study area participated.

Although these methods hold promise to reduce chloride discharge from individual home softeners, the results of this pilot were proven not scalable because of the high cost of these interventions, and possible challenges with public perception. During this study, both optimization and replacement costs were fully covered by the district, at a cost $1,350 per unit for replacement, and $180 per optimization, or in dollars per pound, a cost of $5,220, and $1,186 (respectively), which raises the questions: 1) would participation be as high if the cost were not fully covered by the district? 2) If costs were split between the homeowner and the district, would we see similar levels of participation? 3) Would optimization and replacement be feasible source reduction strategies, should the majority of the cost be paid by private homeowners?

In the 2015 study, there was no control group in which participants were invited to undertake the interventions without fully lowering cost as a barrier, so, to what extent the incentive had on participation is not known. In 2016, a small pilot study in Madison’s near-eastside Tenney-Lapham neighborhood was undertaken to start to understand what the expected percentage of participation could be. The Tenney-Lapham pilot focused on optimizations exclusively, and found that a $75 optimization incentive, promoted by an email and mailed flyer garnered a total of 38 optimizations (out of about 900-1000 residential addresses considered within this neighborhood). It is estimated that 4-10% of the population of this study completed an
optimization, which could be partially attributable to a high percentage of non-owner-occupied homes (rentals) in this pilot area.

To follow up on the question how if/how much homeowners would be able and willing to put into softener upgrades, the sewerage district surveyed a random sample of adult service area residents about their willingness to participate in and pay for a water softener optimization in Fall 2019. Among homeowner respondents who report having a water softener, an overwhelming majority (70%) were willing or very willing to participate in an optimization program (described as “a program in which residents schedule an appointment to have a professional come in to their home and tune-up their water softener so it uses less salt.”). The average amount they would were willing to pay for this was $40.03. When asked about their willingness to get and pay for a new high-efficiency softener to be installed only 46% of respondents were willing. When later asked about how much of a rebate would motivate replacement, respondents said about $375.34 on average, would be enough for them to participate.

SALT SAVERS PILOT PROGRAM

Overview
Given the known possible outcomes as a result of optimizing/replacing softeners, the reported willingness of service-area residents to undertake these actions given a limited financial incentive, institutional leadership interest in an individual household rebate program, and guidance from the DNR suggesting to both “evaluate the potential for a rebate program to install high efficiency water softeners” and “recommend residential softener tune-ups on a voluntary basis” (Wisconsin DNR 2022), the Salt Savers Pilot Program was initiated in 2020 with the primary objective of determining the feasibility of, and costs associated with running a municipally administered water softener optimization & replacement incentive program. Educating residents and encouraging voluntary softener tune-ups is a Tier 1 source reduction measure outlined in Wis. Admin. Code § NR 106.90.
Pilot Area - Pumping Station 09 (ps9) Service Area

The pilot project took place in a sub-basin of MMSD’s collection system which all goes through pumping station no. 9. This sub-basin includes the Dunn Sanitary Districts, a portion of the Village of McFarland, and the Pleasant Springs Sanitary Districts.

This area presented an ideal pilot area because within MMSD’s service area because of its:

- relatively small size.
- geographic isolation (everything goes through ps9) and discreet, fixed sewershed boundaries (the pumps do not re-route as is common elsewhere throughout the collection system).
- mostly residential composition—the target audience for this intervention. There are only about 250 commercial water utility accounts in the Village of McFarland, of which, only 140 are located in McFarland ps9 service area. There are only 19 meters greater than 2” in McFarland, and none in the sanitary districts. The Village reports only 56 multi-family residential water meters. In Dunn & Pleasant Springs, even fewer commercial accounts. Estimated total # of commercial buildings for the whole PS09 Service area is 155.
- housing stock and tenure. The area has older homes that are primarily single family, owner-occupied. In the Village of McFarland, for example 90% of homes were built before 2016, 81% were built before 2005. The older housing stock represents a greater base for potential softener improvement interventions.
- existing wastewater monitoring data, feasibility for installing additional monitoring due to the station’s construction, frequent visit as part of maintenance crew routes, and its inclusion as part of the regular quarterly sampling associated with the district’s User Charge (billing) Program.
o Relatively high median household income. In the 53558 Zip code (Primarily McFarland) is $93,506 (ESRI, U.S. Census Bureau, 2021), compared to the median household income in the county - $75,179, and state - $63,293 (for 2016-2020, in 2020 dollars) (U.S. Census Bureau, 2021).

o Historical outreach in the area – efforts in 2005, 2009 and 2015 on this topic in the area may have primed homeowners to be receptive to current and future outreach.

Perhaps most importantly, there was also municipal leadership and interest from the communities in this area. Members of the Dunn Sanitary districts board and town employees toured NSWTP in early 2019. Upon learning of the geographic isolation (as in there was one control point, PS9), for their area, they initiated a conversation with the district on starting a pilot program. All of the participating communities were able to prioritize this project, get approval from their respective governing bodies, and dedicate staff time to working with MMSD on developing, advertising, and administering the program.

PAST PS 9 AREA WORK

This pilot project isn’t the first effort to look at PS 9’s service area. A previous look at chloride concentration at the District’s billing monitoring (User Charge) points in 2003 helped determine residential softening was a main direct source of chloride to address (un published study). In 2005, the district undertook its first public outreach campaign and monitoring efforts related to chloride in this area. The 2005 outreach was comprised of sending a brochure (see Appendix A: Historical Outreach & Studies in Ps9 Service Area) in the community newsletters for McFarland, Dunn/Kegonsa and Pleasant Springs Sanitary Districts. To study the impact (if any), weekly composite samples were taken March-October that year. Unsurprisingly, a memo summarizing this work (included in Appendix A: Historical Outreach & Studies in Ps9 Service Area), reported no observable change resulting from this one-time outreach effort.

Sampling during this effort in 2005 showed a daily average chloride concentration ranging 440 mg/L to 585 mg/L with an average of 502 mg/L per day. Flows during this time period ranged 0.72 MGD to 1.01 MGD, averaging 0.8MGD.

In 2014, 2017 and then 2019-present, chloride analysis has been included periodically in the District’s User Charge Monitoring program for UC Point PS09. User Charge Monitoring includes six to seven consecutive daily (24-hour flow composite) samples each for July/August 2014, October 2014, and May 2017 and July 2017. These samples, a total of 23 samples, could be considered a ‘baseline’ level for expected chloride concentrations and mass at the pumping station. During this time flow ranged .706MGD – 1.19MGD,

PS 09 service area at a glance:

Distinct customer communities - 3

Residential addresses estimate – 4,020

Estimated daily flows – (from the period 7/9/20-5/9/21), ranges .648 MGD to 1.21 MGD, with an average daily flow of .82 MGD

Estimated PS 9 service area businesses – 155
averaging .9MGD. Chloride concentration ranged 402-555 mg/L, averaging 455 mg/L. It must be noted that these samples included summer and fall samples only.

Using the user charge samples collected in 2017 as an average representation of 2017 conditions, (using average flow, and average chloride concentration, average mass, across the 13 samples), an estimated 10% reduction in chloride is needed for the wastewater passing through this pumping station to reliably meet or be under the water quality goal for NSWTP discharge, 395 mg/L.

Workflow
From the established goals, stakeholder conversations, and analysis of barriers, the District & Municipalities worked together to design a project workflow that would satisfy the need to transparently document and verify interventions, issue incentives, and ultimately support overall reduction in water softener salt discharges to the sewer system.

The basic workflow of the program was designed as follows:

Table 2: Pilot Workflow

1. **Service provider training**
The district trains service providers, such as plumbers and softener technicians on a standardized process for evaluating water softeners, proper settings programming for salt minimization, and making recommendations about replacements. They are also trained on using a program-specific reporting form via mobile app.

2. **Promotion**
MMSD and municipal partners promote the program ([Error! Reference source not found., page Error! Bookmark not defined.]) Main messaging of the advertisements centered on the themes, “Check your water softener”, most of which had a QR code leading to the self-screen diagnostic.

3. **Softener Evaluation**
Homeowners can self-assess softener using online tool, or call a service provider to assess their softener. Either way, they will get a diagnostic report with recommendations for next steps to minimize salt use, and whether or not they would qualify for a rebate from their community.

Service providers were coached during training, to also offer homeowners in the pilot area free inspections while on call for other services, for example, while already on-site to fix a leaking faucet, they could offer to evaluate the softener.
4. **Softener improvements (inspection, optimization and/or replacement)**
Service providers perform evaluations, optimizations or replacements in accordance with specified guidelines about set-up, efficiency and sizing.

5. **Reporting**
Service providers document the inspection, optimization and/or replacement and their time and location. Reporting done primarily electronically (via the Survey123 mobile app, later described in GIS, page 20)

6. **Review**
Municipal staff review provider-submitted reports (using the ESRI Solution “Citizen Problem Manager” dashboard, later discussed in GIS, page 20 below) to verify accuracy and completeness.

7. **Incentive Reimbursement**
Incentives are issued to either the homeowner or the service provider (see inventive model discussion above).

Design

The design of the Salt Savers Pilot was meant to find a balance between available resources/staff time, addressing short term barriers (such as cost, service provider knowledge), while simultaneously laying the foundation for longer-term change (such as norms, awareness, convenience, transparency).

ANTICIPATED BARRIERS

To get the highest participation possible, we took efforts to make it as easy as possible for residents. In designing the program, we started with thinking through all the possible barriers, and made sure to build elements into the program that would address those. Anticipated barriers, and program elements designed to mitigate these issues are detailed in Table 3: Pilot Design, below.

<table>
<thead>
<tr>
<th>Anticipated challenges</th>
<th>Aspect of the pilot to address challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of awareness</td>
<td>• Marketing push: saturate community with information about softeners & chloride pollution</td>
</tr>
<tr>
<td>Commonly, homeowners don’t know if they have softeners, or what condition they are in. Knowledge of chloride pollution is also not common knowledge. Also, MMSD brand awareness low</td>
<td>• Leverage municipal partners’ namesake, brand and credibility to elevate salt pollution urgency</td>
</tr>
<tr>
<td></td>
<td>• Dovetail with existing service calls and existing trusted messengers (plumbers)</td>
</tr>
<tr>
<td>Softener Maintenance Norms</td>
<td>• Provide service providers with stickers to put on the softener that include inspection date & instruction for future maintenance (as is common with other appliances, such as hot water heaters or furnaces)</td>
</tr>
<tr>
<td>“Set it and forget it” is a common phrase used to tell homeowners what to do with their softener. Furthermore, softeners have a long lifespan, “if it</td>
<td></td>
</tr>
</tbody>
</table>
| ain’t broke, don’t fix it” mentality conflicts with known softener efficiency decay (due to resin degradation) of ~2% or more per year. | • Provide homeowner some type of documentation for their home appliance files, showing the age of the softener, and recommendations about when to check efficiency
• Make a quick softener inspection standard as part of all plumbing house calls. |
|---|---|
| **Salience/prioritization**
Softeners are a low-priority appliance, Often hidden away in basement utility rooms, they are likely not ‘top of mind’ among other appliance/household needs. | • Make checking the softener a default – include quick softener inspection & homeowner education part of all plumbing house calls
• Awareness (aforementioned marketing push) |
| **Lack of information**
Give specific action for residents to take to improve their water softener. That being said, settings are not transparent, hidden within the control head, not user-friendly, homeowners may not be able to figure out settings themselves. | • Develop clear, simple ‘ask’ for residents to take when interested in reducing their salt use created:
• Develop list of trained water softener service providers, list on MMSD Website- people for them to call for more info.
• Increase availability of web-based, google-searchable home softener specific information.
• Develop ‘clunker list’ of softeners that just need to be replaced.
• Provide test kits for homeowners to DIY |
| **Cost**
New, high-efficiency softeners can cost >$1,000, a large expense for many household budgets. The efficiency gains/savings available by upgrading are very small, there is almost never a return on investment for upgrading a softener efficiency. Optimization can also be pricey, costing up to $120. | • Incentive programs (rebates) lessen the financial cost |
| **Inconvenient**
Although most softeners can be improved, no resource currently exists to confirm this for homeowners – who to call? | • Dovetail with existing service calls so homeowners don’t even have to think about it.
• Develop self-check tool (web-md style) for home owners to diagnose softener without having to take the less convenient step of scheduling a service call. |
| **Technical skills**
No standardized process for service providers to follow to evaluate and optimized a water softener exists. Very few technicians in our service area know how to program softeners for salt efficiency. | • Cultivate a wider base of partners who can get the message to our target audience
• Develop standard optimization guidance
• Develop training program
• Train and provide decision assistance tools for WQ Professionals, including plumbers, so that (in the short term), the pool of available providers is large enough to meet demand for services, and (long-term), both standardize optimization and shift business norms to include softener optimizations. |
• Train service provides on giving standardized recommendations so homeowners get consistent guidance.

Administrative & capital capacity
Limited staff at MMSD to administer grant program for residential softeners. Municipalities have limited funding to offer program themselves.

• Engage municipal partners to lead through innovation grant model.
• Develop tools that facilitate communication and program administration

Evaluation
How to measure the success of the intervention when there is no existing pattern, instruction manual or method for measuring this kind of intervention, as this project has not previously been done anywhere else.

• Install continuous monitoring at pumping station
• Require reporting forms to estimate reductions, track costs and effort. Knowing what actions are happening and where will help answer questions such as: Is this project scalable? Was it successful? Is it worth repeating? What’s worth doing more of? Less of?

FUNDING
Pilot area participating municipalities were supported in their involvement with this project through Chloride Innovation Grants from MMSD. Innovation grants were established in 2017 to support projects that facilitate permanent reductions of chloride (salt) to the district’s sewer system through changes to business practices, behaviors, and norms (Madison Metropolitan Sewerage District, 2022). The Village of McFarland, the Town of Dunn and Pleasant Springs Sanitary Districts all individually applied for innovation grants to support their administration of the Salt Savers Pilot. Their grants covered direct incentive expenses, as well as administrative time to run the program.

INCENTIVES
Stakeholder Interview- Plumbers
As barriers and possible mitigation strategies were considered and the format for the program began to come into focus, the need to gain early-buy in from plumbers became glaringly apparent. We sought feedback early-on from plumbing shops, the plumber’s union, Local 75, and water quality industry professionals (as is later discussed in Softener Evaluation & Optimization Process Development, page 18), and local plumbing shops. In early conversations with plumbing companies, they cited 1) service plumber lack of knowledge (about optimization, softeners generally), and, 2) the cost for getting someone on-site as the biggest barriers to plumbers carrying out softener inspections. Knowing this, providing some sort of incentive to compensate providers’ time to encourage a transition to a business model in which routine softener inspections become the norm, and developing a training program to teach a standard inspection & optimization checklist decision support tools and standardized methods for documentation were essential to providing quality, reliable optimization services.
Incentive Models

The participating municipalities lead on choosing a model they wanted to offer for their community. Each individually opted to use different system. The Town of Dunn opted to use a service provider reimbursement model in which:

- Certified service provider performs an optimization or installs new softener for which the homeowner is billed with a discount at the point of sale (optimization = free, *up to $75; installation = discounted $200)
- Service provider records and tracks every discount provided.
- Municipality reimburses the service provider for services performed/discounts offered in the reporting time frame.

The Village of McFarland and Pleasant Springs Sanitary District chose to use a rebate model in which:

- Certified service provider performs an optimization or installation of new unit and charges full price; provides the customer with a voucher for the corresponding service.
- Homeowner submits the voucher to the municipality.
- Municipality issues a sewer bill credit for the amount of the voucher.

One idea that was also discussed, but ultimately not used was an event-based model, in which:

- Municipality schedules and publicizes softener tune-up dates/times and has residents sign up.
- Trained service providers sign up for event slots.
- During the events, service providers systematically evaluate/optimize softeners for residents that have signed up.
- In the event that service providers are finding clunkers, they provide a rebate for replacement.
- Service providers are reimbursed by the municipality

Amount

There were two tiers of incentive offered as part of this pilot program:

- **$200 for replacement of an identified clunker.** A replacement is defined as: removing a softener that meets at least one of the following criteria 1) 15 years old or older 2) on an identified clunker list 3) is an analog days-regenerating (timeclock), and replacing it with a new, demand-initiated softener that is set-up and sized to meet a minimum efficiency of 4,000 grains/lb.
- **$75 for an evaluation or optimization.** Evaluation is defined as: a documented water softener inspection (in-person or virtual) which uses a standardized questionnaire for determining softener status to provide recommendations for salt-efficiency improvements. An optimization is defined as: documenting actions taken to increase water softener salt efficiency. This could include (but isn’t limited to) readjusting hardness setting to better match influent water, adjusting reserve capacity or salt dose, cleaning resin, or changing injector size.

Results from the previously mentioned 2019 Community Values Survey, Paired Sewershed Study (Lake, Erickson & Cantor, 2015), and pilots in the Tenney-Lapham Neighborhood led to these incentive amounts.
Conversations with plumbing shops affirmed this as something that would work. Plumbing shops quoted $120 as the general going rate for a service call (trip fee) plus $60/hour after that. For home softeners, the plumbers estimated 15 minutes was all that was needed for an inspection, so if compensated, inspecting a softener as an add-on (dovetailing with an existing call) could be easily covered with a nominal incentive. That being said, questions about how to proceed past a simple inspection, for example if an optimization takes place (which might take longer), or how to compensate for calls that are stand-alone softener inspections (not dovetailing with existing service calls), affirmed that a $15 incentive was not enough to make service providers whole in all scenarios. $75 was a compromise by all parties as a universal reimbursement for a documented ‘inspection’, (whether it was an add-on or a stand alone) and, and for an ‘optimization’ (again, whether it was stand-alone or an add-on to an existing service). This amount was agreed upon by water quality technicians too.

Service Provider Training

SOFTENER EVALUATION & OPTIMIZATION PROCESS DEVELOPMENT

A natural prerequisite to developing a training program, standardized procedures for softener evaluation and inspection were needed. Through previous studies, like the Paired Sewershed study (Lake, Erickson & Cantor, 2015), and conversations, it was discovered that optimizing a softener through settings changes is possible, however, there was no standard methodology for, setting-up (including plumbing configuration), and programming a water softener for salt efficiency among plumbers and water quality providers. The Region of Waterloo offers a salt-efficient softener sizing tool, “Softener Buyers Guide” on their website, WaterSoftenerFacts.ca, and various DIY guides for softener set-up are available online, however, none of these fully operationalize a total salt-optimization inspection, overview, assessment. Even a basic step, such as setting the hardness for influent water varied greatly from service provider to provider, yielding greatly different results for softener efficiency. Technical guidance for optimization process began by working with water softener manufacturers, installers, and wholesalers in 2018. The District had first convened this group of local water quality industry leaders to develop a Best Management Practices Guide, or BMPs, in 2015 (Madison Metropolitan Sewerage District, 2015) to set general standards for water softeners. These BMPs set recommended efficiency performance, but did not explain how to get there or calculate efficiency. This initial group of experts, plus additional reviewers (see blue box, Figure 2: Optimization Process Technical Experts Consulted) were asked to weigh in on things like: determining plumbing configuration and softener age, criteria for a softener to be ‘optimizable’, criteria for replacement, resin atrophy & efficacy of resin cleaning, sizing considerations, recommendation for idle softeners in seasonal homes, salt settings, and reserve capacity considerations, ultimately yielded a standard checklist (Appendix C: Softener Training Materials) for a water softener inspection/optimization, and, by and large formed the basis for training program content. The review process also included compiling lists of current problems and potential solutions with the goal of developing a comprehensive training program for service providers.

Figure 2: Optimization Process Technical Experts Consulted

Optimization Process Technical Guidance Provided by:
AJ Jameson, Technician at Culligan Total Water
Don Vaughan, Engineer at Clack Corporation
Jeff Hellenbrand, Owner of Hellenbrand Water
Joel Wick, Capital Water Softeners
Ray Mayne, Owner of Fox Water
Paul Lippitt, Engineering Specialist for WI Dpt. of Admin.
and obsolete models (those which are still optimizable and those which are deemed ‘clunkers’). This step-by-step diagnosis and treatment process for optimization was translated into the first iteration of the Survey123 app for plumbers (later discussed in GIS Tools, p. 20), and was tested during a 2019 training with Madison College Apprentices. As the Survey123 app was coming together, district staff were in touch with the Waukesha Wastewater Treatment plant and their consultants working to develop a softener optimization program for their Pollutant Minimization Plan. Although both programs (MMSD & Waukesha) both had apps, the underlying purpose and therefore the design/roll-out and target audience differed greatly.

TRAINING CONTENT
The technical training class for water quality professionals, plumbers, and other related trades, titled, ‘Salt Wise Soft Water’ was first rolled out in its current form in 2019, as an extension of a similarly titled class originating in 2016, that covered softener-salt reducing actions in generalities. Class training booklets and content was reviewed by the same group of professionals who reviewed technical softener optimization guidance. All class content is summarized in the materials provided in Appendix C: Softener Training Materials, including class workbook, annotated training slides, and associated resources.

The full training consisted of three distinct segments that could either be taught independently as stand-alone, taught together concurrently, or sequentially dependent on audience and available time. The primer class focuses on basics of softener evaluation, inspection and an overview of salt efficiency improvement opportunities. The second segment, goes more in-depth into how to program softener settings for efficiency. The third part of the class (added to classes after 2019, for service providers interested in participating in the pilot program) goes over the logistics of downloading and using the Survey123 mobile app for documenting and submitting inspections.

In the State of Wisconsin, professional licensure for plumbing and other trades requires a certain amount of continuing education classes annually. The Salt Wise Soft Water class was submitted and approved (course id 18920) by the WI Department of Safety and Professional Services, as of April 14, 2017 as 3.0 hours of credit for the licenses listed in Figure 3: SaltWise Soft Water Class CEU’s Professional Licensure, meaning that professionals who attend the class, holding one of the licensed licenses could use this class to satisfy their continuing education requirements.

TRAINING ATTENDANCE & CERTIFICATION
The Salt Wise Soft Water course was taught at least eight times formally with large groups 2019-2021, as well as an additional handful of times informally with smaller groups such as plumbing shops or water quality professionals.
companies for their employees on request. See Table 4 below for listing of class date, group in attendance, and number of people estimated in attendance. Parts of the class are meant to be conversational; a dialogue between service providers and the District, so the content has continued to evolve as more is learned.

At the outset of the pilot in PS 9 service area, personal invites were extended to all service providers operating in the participating municipalities, based off of municipal records listing which companies pulled permits in their jurisdiction within the last year.

In order for a person or company to be listed at on the District’s website and considered a certified provider (eligible to provide an incentive qualified service for the pilot program) they have to complete either part or the whole Salt Wise Soft Water training class. In the spirit of growing skills, learning together and evolving the pilot program as this new knowledge is being built, no test or knowledge check was required to be considered certified. Instead, provider reports are monitored for accuracy and completeness. Any further education or course correction is dealt with on an individual basis with that provider directly as things occur. Full list of certified providers participating in the pilot program is included in Appendix C: Softener Training Materials.

Table 4: SaltWise Soft Water Training Class List

<table>
<thead>
<tr>
<th>Date</th>
<th># Attendees</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/19/19</td>
<td>20</td>
<td>Trial run with MATC Plumbing Apprentices</td>
</tr>
<tr>
<td>9/25/19</td>
<td>7</td>
<td>Training class</td>
</tr>
<tr>
<td>10/15/19</td>
<td>29</td>
<td>Training class</td>
</tr>
<tr>
<td>10/30/19</td>
<td>22*</td>
<td>Hosted by City of Madison Building Inspectors *# that took it for credit. Don’t have full record of total attendees.</td>
</tr>
<tr>
<td>3/19/20</td>
<td>22</td>
<td>Canceled due to Stay at Home Order (Covid19)</td>
</tr>
<tr>
<td>8/12/20</td>
<td>9</td>
<td>Virtual provider training</td>
</tr>
<tr>
<td>10/4/21</td>
<td>50</td>
<td>Local 75 Apprentices Class</td>
</tr>
<tr>
<td>10/19/21</td>
<td>25</td>
<td>Local 75 Fall Info Meeting</td>
</tr>
<tr>
<td>Ad hoc</td>
<td>~10</td>
<td>Trainings upon request</td>
</tr>
</tbody>
</table>

GIS Tools

ESRI’s GIS tools are the glue holding the pilot program together. Playing multiple roles from documentation and review to education and evaluation, these highly-customizable tools bring program participants/partners together in an organized, efficient and low-cost way. These tools were employed for this project simply due to the availability and accessibility of them – at the time of the project inception, the District already had accounts to ArcGIS Online and all associated apps. Using ESRI’s tools in novel ways garnered recognition from the company, and was featured in one of their publications as a Case Study (ESRI, n.d.). As flexible and customizable as the tools are, there were still however limitations, discussed in Appendix E: Notes on Use of GIS.

~200 Providers Trained 2019-2021
REPORTING
Use of GIS tools essentially started with a need for a platform that facilitated capture of inspection information, while providing decision support and feedback for the end-user. Survey 123 served these functions. Providers use a Survey123 form (via mobile app) to document inspections, optimizations, and replacements. Homeowners can use a different Survey123 form (browser version) to ‘self-screen’ their home softener. Both questionnaires were built with an XLS form in Survey123 Connect, and hosted through ArcGIS Online. The questionnaire serves a dual purpose as both a way to document softener status and services rendered for purposes of verification and incentive allocation, but also importantly, as a tool to help the provider follow the standard optimization procedure. Extensive conditional logic, the ability to pull data, and answer validation based on the XLSForm, along with an ArcGIS Online map of expected water hardness are built in. These features help providers use more accurate settings for a given address, making this decision support functionality possible. Screenshots of the questionnaire are included in Level 2, Part 2 of the training slides, beginning on page 16 (full training slides linked in Appendix C: Softener Training Materials).

The Self-Screen, a tool for homeowners who want to assess their own softener before calling a professional is also built off of a Survey123 form. This publicly viewable, browser-based Survey123 form has embedded videos and pictures, to make it easier for homeowners to go through a step-by-step process to identify their softener and determine opportunities for improving it. The survey also has an eligibility map built in to determine if they qualify for a rebate from their municipality.

Both the inspection records and the self-screens submitted through Survey 123 utilize a particularly useful feature of Survey 123 for follow up and confirmation: feature reports (example feature report included in Appendix E:). Feature reports allow complex answer piping (from the survey) into a custom template. The program Integromat (Figure 4) is used to automate emailing feature report PDFs to the homeowner for their records (and in the case of provider services, to the provider and program admin for review and rebate issuance). This documentation, including current softener condition and advice for future ongoing maintenance, is a positive step in changing the long-standing "set-it-and-forget-it" attitude toward softeners, and it helps with one of the long-term goals for the project.
DASHBOARDS FOR PROGRAM MANAGEMENT

Survey123 seamlessly integrates with other ESRI apps, such as dashboard, the ESRI Solution, “Citizen Problem Manager” dashboard, and feature report templates, allowing real-time collaboration across organizations; multiple parties can easily view, edit and analyze the ‘live’ inspection information.

The information from the surveys feeds (live) into a number of dashboards (example below) designed for program tracking and evaluation. All the dashboards associated with this project were collated in one place with the ESRI Storymap Map Series Builder, to make for easy centralized access for program administrators.

Program

Promotion Messaging

At the outset of the program, the goal was to fully saturate the area with information so that residents couldn’t say that they would have participated if only they had known. To stretch the limited staff time and advertising resources, most messaging focused on a universal ask for residents to take the self screen. Water softener optimization/upgrade couldn’t be marketed a potential money savings, because, in most scenarios an softener optimization or replacement cost more than the saving recouped by the intervention (estimated to only save about $19/year in salt and $18/year in water (Household water bill= about $70/month (about 3000 gal/month @ .00798/gal for water+sewer - Est. 38 regens per year, 60gal/regen = 2,280 gal/year savings, $18.19 annual water bill savings, $19 salt savings). Environmental reasons were frequently cited as a reason to check a water softener.

Evaluation

QUALITATIVE

Program assessment includes,

- Mid-pilot self-screen poll: Halfway through the pilot program, on 8/10/21, an email survey was sent to early Pilot-eligible Self Screen takers (in McFarland) who had not yet taken any recommended action on their softener by participating in the rebate program (n=48), to determine possible reasons for not ‘converting’ their eligibility and recommendation into action. The email contained a single
question – ‘do you still plan on following the recommendations’, and 2 possible buttons to click (yes and no). Depending on which button is clicked, the respondent would be taken to a separate screen to identify why they had not or would not take the recommended action.

- Intercept interviews: Designed to assess reception of the program generally, and saturation of advertisements in the community. These were conducted after the conclusion of the program (August 2022) by two District staff who asked questions to random passersby in public places in McFarland. The goal was to find out if they’ve heard of the program, what their opinion of it is, and if they saw advertisements. By talking to a random sample of residents, we were also able to hear from area residents if there was something major that we didn’t anticipate or hear about otherwise (as far as reasons for not participating, messaging missteps, for example).

- Exit interviews: To hear about the logistics of how the program worked, semi-structured exit interviews were conducted with municipal partners’ program admin and with each of the participating providers after the program ended.

- Participant Survey: Rebate recipients were given an opportunity for providing feedback after the program ended by way of a questionnaire that was mailed to the address where rebates were issued (n=210).

- Content analysis: An open-records-request was put in to the McFarland Assessor’s Office, to obtain records of building permits before during and after the pilot. This data was examined to determine additionality.

MONITORING
A desire to measure actual chloride levels at the pumping station was present since the origin of the pilot, to verify reported changes resulting from actions stimulated by the incentive program. To accomplish this, data was collected in two ways: 1) User Charge- as a dovetail with existing samples used for standard District billing purposes, and 2) Probe Data- with a novel use of a freshwater conductivity probe.

Quarterly Sampling
Chloride concentration is the main measure of chloride typically used at the WWTP, for permit purposes and research projects alike. Concentration is measured at the MMSD Lab, which is a State Lab of Hygiene and WI DNR certified lab, using Ion Chromatography, per EPA 600/R-93-100 Method 300.0, and Chromeleon software, filtering samples and diluting them as necessary to fall within a given analytical curve.

Daily 24-hour composite samples are regularly taken through the collection system (at fixed points) on a quarterly basis as part of district rate setting through a program called ‘user charge sampling’. Pumping station 09 (the pilot area) is a user charge sampling point, so every quarter, five days of 24-hour composite samples are already being returned to the lab for existing purposes. During the pilot period, chloride concentration was measured in all user charge samples from PS09, a total of about 60 samples.
Continuous Conductivity

To gain additional coverage beyond the existing quarterly chloride samples collected as part of ‘user charge’, an Onset HOBO U24 Freshwater Conductivity Data Logger (U24-00x) logger was installed in PS09, on 7/9/20 to measure continuous conductivity in the pumping station wet well. A wall-anchored cable, is used to lower the logger into the wet well within protective pvc pipe fixed to the side of the wet well wall. Pump station engineering schematics were consulted to ensure the cable reached to below the ‘low water mark’ for the station, so that the logger would remain continuously submerged. The install of this housing required a temporary shut down of the station and partial drain of the wet well. The logger started collecting data (temperature and conductivity) at five minute intervals on 7/9/2020 and remained in the pumping station well until after the pilot concluded.

Retrieving the logger requires staff with specialized training and equipment (confined entry). Data is retrieved biweekly, at which time the logger is cleaned and checked. Instructions and procedure for field collection of data is included in Appendix B: Conductivity Logger, Data Procedure.

RESULTS

Participation

SELF SCREEN

In total, 334 self screens were submitted (March 27, 2021-July 2022). Three times out of four the Self Screen tool was able to make a recommendation to the taker; only about a quarter of self-screens did not provide enough information to make a diagnosis (including those due to user error, non-completion, and those which were not included in the self screen metadata).

About half of all self-screens elected to determine their eligibility for the pilot; total, 183 self-screen takers voluntarily disclosed their address to check their eligibility for pilot. From those, 37 addressed matched addresses that participated in the rebate program. Assuming the self-screening came before participating in the rebate program, the messaging focused on having people try the self-screen to determine eligibility did somewhat work to make conversions.
REBATE
A total of 229 home water softener interventions were completed as part of this pilot program, by twelve providers from five different companies. Across all communities, replacement was the most participated in intervention.

Table 5: Self Screen Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th># of Self-Screens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>163</td>
</tr>
<tr>
<td>Optimization</td>
<td>76</td>
</tr>
<tr>
<td>Not enough information provided</td>
<td>95</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
</tr>
</tbody>
</table>

The 229 services completed overall were completed within 210 addresses (ie. some addresses may have had multiple actions completed, like for example an initial inspection that resulted later in a replacement). As a percent of each area’s total number of residential addresses, participation was around 5% in McFarland, 9% in Town of Dunn Sanitary Districts, and 2% in Pleasant Springs Sanitary Districts.

Table 6: Rebate Participation by Community

<table>
<thead>
<tr>
<th>Community</th>
<th># Replacements</th>
<th>#Optimizations</th>
<th>Inspection only</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>McFarland</td>
<td>Nov. 15, 2020- May 31, 2022</td>
<td>120</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Pleasant Springs Sanitary Districts</td>
<td>July 2021- May 31, 2022</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>34</td>
<td>41</td>
<td>229</td>
</tr>
</tbody>
</table>

COMMERCIAL SOFTENERS
In the Village of McFarland, a co-branded (District & Village) letter went out to all commercial water meter billing addresses October 2020 (copy of letter in appendix), inviting them to call a service provider for a free water softener evaluation. The mailing included 205 addresses, including:

- 141 - 5/8 Inch Meters
- 31 – 1 inch meters
- 21 - 1.5 inch meters
- 12 - 2 inch or greater meters
Printing of the co-branded letter was done in-house, and envelopes were provided by the Village. It cost $102.50 in mailing costs ($0.50 per piece postage). The district reimbursed providers directly for their inspections, $75 per documented inspection, captured in a Survey123 questionnaire made for this portion of the project specifically.

Outreach
At the outset, the goal was to spread as much awareness of the program as possible. Table 7: Outreach Efforts, and Appendix D: Outreach Materials chronicle the advertising and outreach efforts throughout the pilot in each of the participating communities.

Table 7: Outreach Efforts

<table>
<thead>
<tr>
<th>McFarland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Mail</td>
</tr>
<tr>
<td>Postcard</td>
</tr>
<tr>
<td>Newsletter</td>
</tr>
<tr>
<td>Flyer</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Newspaper</td>
</tr>
<tr>
<td>Electronic</td>
</tr>
<tr>
<td>Newsletter</td>
</tr>
<tr>
<td>Social media</td>
</tr>
<tr>
<td>Website</td>
</tr>
<tr>
<td>Website</td>
</tr>
<tr>
<td>Event Based/Site Specific</td>
</tr>
<tr>
<td>Flyers</td>
</tr>
<tr>
<td>Signage</td>
</tr>
<tr>
<td>Event</td>
</tr>
<tr>
<td>Event</td>
</tr>
<tr>
<td>Event</td>
</tr>
</tbody>
</table>

27 commercial facilities had softeners evaluated as part of the pilot program also, accounting for at least 7,675 lb. of salt use annually, direct reimbursement costs totaling $1,425
Local water-affinity groups were also invited to share information about the Salt Savers Program. The Yahara Lakes Association included an article in their March 2020 newsletter, and program managers were in touch with the Friends of Lake Kegonsa and Waubesa Beach Neighborhood Association. District staff made a presentation to the Lake Waubesa Conservation Association in September 2020.

In addition to promotion & advertisement specific to the Salt Savers program, before, during and after the Pilot, various area organizations, including all of the founding members of and the WI Salt Wise Partnership, have been actively promoting responsible salt use in the region, including numerous annual trainings, webinars, equipment open houses, billboards, etc. Along those lines of salt-related but non-pilot specific advertising, the District has also long maintained public outreach such as plant tours and events, where salt-reduction is always a topic, and resources like offering a mail-order Hose Bibb Test Kit for free to residents of the MMSD service area.

In intercept interviews conducted August 2022, when asked if they had heard about the “Salt Savers (water softener rebate) Program”, three out of four (about 76%) of random passerby interviewed said they had not heard about the program. Although it was a small sample size (30 interviews overall), it indicates that despite the advertisements and outreach, there were still a sizeable segment of the population who were not aware of the program.

Figure 7: Self-Screen Referral
Among those who were aware of the program, (ie. intercept interviewees, elf-screen takers, participants), postcard/mailer and newsletter were the most frequent ways they heard about the program.

These was confirmed in intercept interviews and in a survey of rebate program participants. Of the 210 addresses that were contacted to provide feedback (in the form of a survey), 101 (48%) responded. Among respondents, postcard/mailer and newsletter were the most frequently cited ways in which they had heard about the program.

Timing of self-screens and jobs for the rebate program support this finding as well. Following the first mailing, there was a large wave of interest (as indicated by increases in self screens and rebates issued), however, with subsequent mailings and interventions, only marginal gains were seen.

Evaluating the various forms of in-person/event and site-specific advertising was somewhat limited mainly due to website set up which did not allow tracking or analytics for unique QR codes or links that referred people to the self screen or other resources.

Overall, doing outreach ended up being one of the more time intensive aspects of the pilot, as the district led and paid for most of the outreach efforts, with the partnering municipalities often taking a facilitator role. Staff time needed for coordination was usually the limiting factor in ability to promote the program.
SPECIAL PROMOTIONS
Three separate advertising efforts tried messaging related to an additional prize or incentive. The first, as part of end of the Friends of Lake Wingra’s Chloride Innovation Grant, attempted to encourage people to take the self screen in order to be entered into a drawing for a $50 Monroe Street Business gift card. Monroe Street is in Madison, a different city than the pilot projects, however it is a popular shopping area. This was part of an initial push to advertise the self screen, and as open to anyone as a general push to get more self-screen takers – it was not specific to the PS 9 Pilot Area. Attempts were made to have the businesses where the gift card could be redeemed promote the drawing, to reach a wider group. Whether they ended up posting anything (at their retail locations or online) is unknown. The Monroe St. Business Association posted at least once, however the advertisements did not cite how many $50 drawings, when they would be happening or when the deadline for entry is. When asking where they heard about the self-screen, thirteen people specifically cited the Friends of Lake Wingra as how they heard about it. As an add-on to this campaign, self-screen takers who provided an email address (n=103) were sent a follow-up email after submitting their self-screen, which asked them to refer someone. They were offered to get two additional entries in the drawing by referring someone. This appeal did not encourage significant additional self-screens; about five people claimed they were referred by someone else during this phase of the drawing.

Since so much of the first gift-card drawing was in other peoples’ hands and uncontrollable to project managers, a second gift card incentive, that guaranteed a result was tested throughout December 2021. The ad promised the first 100 homeowners to take the self-screen were guaranteed a $10 McFarland Business gift card. The ad originated from the District’s social media, and was shared out once by the Village of McFarland. Again, whether the businesses where the gift card is redeemable at promoted it or not is unknown. 100 gift cards were not used up by the end of the pilot period, and we heard reports from residents who had gotten the gift card, but were not actually able to use it because of confusion among businesses who were listed as accepting it.

The third raffle-related incentive to take the self-screen happened at a McFarland High School Football game. McFarland High School Eco Club members volunteered to pass out flyers about the self-screen and get the word out to residents. If people scanned the self-screen QR code on their phone, they were made eligible for...
a drawing, with the prize being up to $40 of McFarland Athletics Merch/Logowear. Although the volunteers were present for the evening through the first half of the game and gave out many flyers, only a handful (less than 10) people actually entered in the drawing.

SOCIAL MEDIA
The District (Facebook, Linkedin, Twitter, Instagram, and Youtube), and municipal partners, Town of Dunn (Facebook), and Village of McFarland (Facebook, Instagram, Youtube, Next Door, Linkedin) all promoted the Salt Savers Pilot Program Rebate on social media. Through Feb. 2021, the Village of McFarland posted a total of 4 times about the Salt Savers Pilot from the time of the program kick-off (Nov. 2020), three times on Facebook and once on Instagram (same post that was used on Facebook). The Town of Dunn posted 3 times since the start of their pilot program in 2019. The District posted 48 times on salt reduction on Facebook, 21 times on Instagram, 71 times (including retweets) on Twitter, and at least six times on Linkedin, throughout the pilot programs’ durations- almost 150 times total. Posts to Facebook about Salt Savers from the district’s account generally reached around 150 people, with about a dozen engagements (reactions + comments) per post. A few of the Facebook posts reached around 2,000 people. The District experimented with boosting one post related to the Salt Savers Pilot. The boost lasted 12/16/21 to 12/31/21 with a $10/day budget ($149.99 total), and was targeted to primarily women (about 60%), aged 25-64, within 2-3 mile radii of the center of the PS 9 pilot area. The reach for this boost extended to 541 people, garnering 18 link clicks (during the boost period), for a cost of about $8.33 per click. District social media managers thought that although the reach targeted the right folks geographically, that overall this boosted post did not perform well. Overall they said it cost more to run this ad, reaching fewer people and resulting in fewer link links than ads that are typical for other district boosted posts; for comparison, the Artist in Residence ad that was run in October 2021 cost $30 to reach 1,587 people to yield 68 link clicks at a $0.44 cost per click.

OUTREACH/ADVERTISEMENT IDEAS NOT PURSUED
- Targeted neighborhood outreach (door hangers, signage, event days)
- Signage at houses that participated (peer pressure)
- Targeted online ads (google ads)
- General public signage/billboard in community
- Event/sign-up days
- McFarland TV channel
- Realtor partnerships
- Public meetings

GOVERNMENT BUILDINGS, LEADING BY EXAMPLE
In January 2020, Village staff, District staff and a water quality professional walked through McFarland’s Municipal Building and Fire Station to have their water softeners inspected and optimized. During the check-up it was discovered the Firefighters had been experiencing hard water, and that their softener was set up wrong; a good example of why periodic maintenance and check ups on softeners can be useful. This was
meant to messaged out to the community as a case study- to show how the Village is leading by example, however staff capacity and timing with the pandemic led to limited ability to share this story out. Although the intention was there, it just didn’t work out for a variety of factors. Still, it is worth noting that oftentimes municipalities (even smaller ones, like the Village of McFarland) have municipal buildings that have softeners operating in them.

Additional Local Salt Reduction Efforts

ONGOING ROAD SALT/WINTER MAINTENANCE SALT REDUCTION

In addition to the efforts put forth as part of the Salt Savers Pilot Program to decrease salt contributions from home water softeners, Municipalities in the Pilot Area also took steps to manage their winter salt use. In 2018, the Town of Dunn sent plow operators to training and added pre-wetting systems to all of their trucks (funded with at 2018 Road Salt Reduction Equipment Grant from MMSD). They discontinued using a salt/sand mix (considered a best practice), and installed computer sensors that calibrate the brine pumps and augers to reach for a target application rate of 300lb/lane mile. With using the new set-up, they are able to make 2-2.5 rounds on their plow routes with a full truck, whereas they used to only just make one round. In McFarland, the Village Public Works has sent nearly all operators to a winter maintenance training class at one point, and have written and adopted a snow and ice program policy. Operators only lay down salt when needed on their second pass, and they have committed to never salt an area that has not yet been plowed. As of the pilot program concluding, they just started using brine as part of a pre-wetting system.

Chloride Reduction

Using existing estimates for average daily discharge per household water softener, and expected reductions that result from optimizing and replacing outdated softeners (Lake, Erickson & Cantor, 2015), we can estimate this pilot resulted in a reduction of 75.5 pounds of salt per day (45 pound of chloride per day) reduction to the sewer system (a 27,550 pound salt per year total reduction).

Table 8: Program Chloride Reduction Estimate

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Avg. pounds/salt/day</th>
<th>Avg. reduction per</th>
<th>Estimated Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacements</td>
<td>154</td>
<td>* 0.93</td>
<td>* 47%</td>
<td>= 67 lb salt/ day (40 lb cl-)</td>
</tr>
<tr>
<td>Optimizations</td>
<td>34</td>
<td>* 0.93</td>
<td>* 27%</td>
<td>= 8.5 lb salt/ day (5 lb cl-)</td>
</tr>
</tbody>
</table>

Estimates based off of continuous conductivity monitoring in the pumping station are not available to report out in this paper yet as the method and techniques for analysis continue to be developed, however key early takeaways, lessons learned while developing this monitoring methodology include:

- Battery preventative maintenance for the shuttle is required every 3-4 months. (battery for the logger is encased within, and rated to 3 years at 1 minute logging intervals according to the manufacturer, so logger battery life was not an issue during this pilot)
- Regular probe sensor cleaning is essential. Given that the probe’s manual cautions against fouling (even in natural aquatic environments), and encourages frequent cleaning of the sensors, we
suspected this would be required very frequently in a wastewater environment. During every other week checks, the logger was pulled out of the water, so data could be transferred to a data shuttle and brought back to the office. At this time, the probe was typically cleaned. During the first few months of cleaning however, it was assumed the end was the probe measurement area, where it was actually a small indentation and metallic sensor on the top.

- Quality calibration readings are essential. Going from conductivity to an estimate of chloride concentration takes many steps (detailed in Appendix B: Conductivity Logger, Data Procedures), and having quality calibration points for adjusting raw conductivity to specific conductance makes a big difference in quality of the data.

Looking at chloride concentration in daily composite samples collected quarterly for billing, before, during and after the program, using a changepoint model with and without assuming autocorrelation, there was no statistically significant decrease in the measured chloride concentration found. The probability of change great enough to observe in actual wastewater samples is not large enough to report a significant change during the pilot.

Expenses

The total cost of the project over four years is estimated to be around $333,900.

<table>
<thead>
<tr>
<th>Table 9: Pilot Costs</th>
<th>Estimated Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Expenses</td>
<td></td>
</tr>
<tr>
<td>Municipal Administrative</td>
<td>3,951.04</td>
</tr>
<tr>
<td>Incentives</td>
<td>32,800.00</td>
</tr>
<tr>
<td>Monitoring</td>
<td>761.00</td>
</tr>
<tr>
<td>Outreach & Advertising</td>
<td>1,596.08</td>
</tr>
<tr>
<td>Software</td>
<td>3,880.00</td>
</tr>
<tr>
<td>Training</td>
<td>209.27</td>
</tr>
<tr>
<td>Evaluation</td>
<td>566.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$43,763.39</td>
</tr>
<tr>
<td>Estimated Staff Time</td>
<td></td>
</tr>
<tr>
<td>Program managers</td>
<td>268,723</td>
</tr>
<tr>
<td>Supporting services</td>
<td>21,980</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$290,703</td>
</tr>
<tr>
<td>Total</td>
<td>$333,900</td>
</tr>
</tbody>
</table>

Major expenses for the program were the rebates (direct incentive), and staff time. Over the course of the whole pilot’s four years, 2019-2022, an estimated 4,560 hours were spent on project development, management and evaluation by pollution prevention staff (a manager, two full-time staff people, and two different summer interns). For two full-time employees, this project alone made up 30% of their job duties or more for a solid two years. In addition to project managers, an approximate, 400 hours of time from supporting staff, such as chemists, GIS staff, maintenance/monitoring staff and district communications/business services staff were also spent working on this specific project.

DISCUSSION

This pilot was initiated with the dual purposes of a) determining costs associated with and b) feasibility of running a municipally administered water softener optimization & replacement incentive program. It was successful in determining both.
Cost
Using the estimate of overall chloride reduction described above (using estimates based off of calculated chloride reduction vs. measured reductions), the Salt Savers Pilot cost an estimated $7,420/pound of chloride per day (or $4,423/pound of salt/day). Against other chloride reduction incentive initiatives the District has been involved in, this particular intervention’s overall cost per pound of chloride reduced ($7,420 per pound of chloride reduced per day) is high. Rebates to industrial and commercial facilities and pass-through grants to softener companies from 2015-2019 for example, averaged only $63/day and resulted an overall higher total pound reduction (>1,800 pounds/day reduction vs. 45 pounds/day) (Madison Metropolitan Sewerage District, March 2020).

Effectiveness
Overall, offering a municipal water softener optimization & replacement incentive has been feasible, as evidenced by the program launch and the 500-odd residents it reached in some way. Program efficacy however, whether it was able to reduce an amount of chloride sufficient to measure an impact at a pumping station, or at NSWTP, and stimulate increased overall community water softener efficiency, is another measure.

One way to evaluate effectiveness is to measure the additionality, or the extent to which the program accelerated the rate of water softener replacement (Bennear, Lee, and Taylor 2013). The evidence for this program providing additionality is tenuous. 77 out of 100 respondents to a post-program participant survey cited good timing, “To take advantage of the rebate while it was available since my softener was old and had to be replaced anyway”, as a motivation for participating in the program. About 60% of respondents overall cited this as their primary motivation for participating in the program.

When asked directly, “Would you have optimized or replaced your softener within the last two (2) years if there had not been a rebate program?” in the same post-program follow-up survey, about half of respondents (52%), indicated that they would not have optimized/replaced their softener within the last two years had there not been a rebate program. Truthing participants’ responses with records of building permits issued in the Village of McFarland before, during and after the pilot, as well subsets of permits, plumbing-specific permits, and a further subset of those, softener-specific permits, is confirmed. The number of plumbing permits and softener permits issued during the pilot period both show a slight overall positive trend (Q4 2019-Q1 2022).
Taken in the context of the timing for the pilot however, it’s hard to say whether this was due to the pilot program, or just following a national building trend in which, the “the pandemic... helped to fuel continued growth in spending on replacement projects”; “The share of homeowner expenditures devoted to updating older systems, replacing basic exterior elements, and adding outdoor features had risen throughout the 2010s, and firms serving these specialty markets generally reported an increase in workloads in 2020.” (Improving America’s Housing 2021, 2021). Attempting to isolate softener-specific permits from this overall trend, comparing average monthly softener-specific permits to total average monthly plumbing permits in the same time shows that there may have been an increase in rate of pulling softener permits during the pilot, but more time will be required to see if the rate stays high throughout the following years. It may be too soon to tell. Taken together, responses from the participant survey, and evidence seen from analyzing permits, there is slight evidence of additionality.

Through the course of this pilot, new information emerged, which, taken with previously known facts about softener aging-related efficiency losses, challenges an assumption embodied in the original inception of this project: that all residents require a softener, and that they prefer all water in a house to be softened to zero grains, constantly. Calling the need, and importantly, assumed consumer desire, for
constant, zero-hardness, full-line softening into question proves an enormous opportunity for a pivot away from status-quo preserving tactics that gain only marginal, temporary chloride reductions (Appendix F: Full-Line vs. Hot Only Cl- Reduction Potential, p.70).

Softener inspection reports showed an opportunity for larger change uncovered as part of the softener data collected by provider-submitted reports. In the town of Dunn, 95% of homes inspected had all water throughout the house (often less the kitchen sink) running through the softener, and 82% in Mcfarland. Having such a high percentage of housing with a huge opportunity to reduce soft water use would likely account for a greater overall reduction in chloride than incremental gains that could be achieved with optimizing softeners (full example calculated in Appendix F: Full-Line vs. Hot Only Cl- Reduction Potential, p.70). More than just opportunity as identified by provider-submitted reports, data collected through the Self Screen lends support to residents’ willingness to consider less soft water. Of Self Screen respondents, only about 52% of takers claimed to have both hot and cold water softened, while almost 30% actively stated that they had only hot water softened. Whether these self-reported numbers are accurate, is not certain, but it might perhaps speak to homeowners’ willingness to have only the hot water be softened by showing their perceived thoughts about how their plumbing is configured.

Residents’ willingness to tolerate some hard water, demonstrated in (Figure 12), confirm and strengthen a finding of the District’s 2019 Community Values Survey; in which about a quarter of respondents indicated that their softener re-filling habits are accommodating of (they are willing to tolerate) some hard water.

This finding, the abundant opportunity, and partial willingness from residents, to reducing soft water use overall, opens the door to exploring chloride reduction interventions, such as hot-only conversions, blending valves for example, that could be both greater pounds reduction potential (see Appendix F: Full-Line vs. Hot Only Cl- Reduction Potential), and more permanent than seeking incremental gains in the status quo softening paradigm. Previous reports (Lake, Erickson and Cantor, 2015), have documented the temporary nature of softener efficiency gains, due to an estimated resin degradation of 2%/year. Efforts to upgrade and
optimize softeners now (unless paired with a change in norms & attitudes regarding softeners is achieved) would have to be repeated in a number of years or on an ongoing basis. Although an incentive program to upgrade softeners has proven to be feasible, the sustainability of reproducing this program every 10-15 years, with expectation of maintaining or increasing participation is not likely for a utility.

Pilot Program Context
The timing of this pilot project, must be noted. The very first mailings inviting residents of the Dunn Sanitary Districts went out the last week of March 2020, when, within days, life around the world was completely upended due to the COVID-19 Pandemic. On March 13, 2020, President Trump proclaimed a National Emergency concerning COVID-19. By March 17, 2020, The State of Wisconsin and Dane County/Madison Public health issued Emergency Order #12, “Safer at Home”, which limited Wisconsin Residents from leaving their homes except for essential activities, government functions and business operations (Department of Health Services, Evers, Palm, 2020). All “non-essential” businesses were ordered to close (Radcliffe, Caughey, and Seyler, 2021). Although guidelines spelled out what was considered essential, including a provision for “Critical trades. Building and Construction Tradesmen and Tradeswomen” it was not always clear whether voluntary appliance check-ups for non-emergency situations were allowed. Regardless of whether service calls would have technically been allowed or not, many people would have been nervous to have a service provider in their home due to social distancing. The District decided to briefly put the program on pause April-June 2020.

The pilot kickoff timing in McFarland could have also played a role in the program launch. Opening the program in McFarland coincided with a hot topic election.

It is hard to estimate the overall impact that the COVID-19 Pandemic had on participation. On one hand, there was major job loss/loss of income, supply chain issues, increases in cost of building materials, labor shortages, but on the other hand, there was also a dramatic change in how homes were/are used, and unprecedented home improvement projects (Improving America’s Housing 2021, 2021). In multiple providers’ exit interview, they cited the impact of labor shortages on their ability to maximize the amount of softener check-ups and replacements. One company said they ultimately did not end up advertising the Salt Savers program because they already have too much work and can’t keep up as it is.

Considerations for Future Implementation
Should this program be replicated, the following points should be considered:

SCALE OF IMPLEMENTATION
In cases where a municipality only needs to stimulate a small reduction among household sources and has limited opportunity for source reduction among commercial and industrial, this program may be replicable and advantageous. Implementing the pilot program on a larger scale however, should be approached cautiously. University of Chicago economist John List distills evaluating for successful scaling into five vital elements: 1) false positives 2) misjudging representativeness of initial population 3) un scalable ingredients 4) spillovers/unintended consequences 5) economics (Rosalsky, 2022). This particular pilot area would likely not
be representative of a replication in another area, and may have presented a false positive due to the nature of this small, relatively affluent, single-family home dominated community. Unscalable ingredients abound; municipal administration capacity, budget, and primarily, the supply of capable, interested providers willing to incorporate these services into their business model, to name a few. As will be later discussed (in Provider Accountability, p.38), while the program admin worked to stimulate an increased demand in softener jobs, it was later uncovered that there was not will to build capacity among participating provider businesses to meet the increase in demand. Throughout the program, municipal officials heard complaints from residents that they couldn’t get appointments or that service providers did not call them back to make appointments, and providers were aware of this, did not deny it. During exit interviews, multiple providers indicated that they occasionally chose not to take optimization jobs because they weren’t (according to the provider’s business model) worth the time/effort, and that the program didn’t make a difference to them because they already had enough work to keep them busy. Providers indicated that they didn’t have any interest in adding capacity to their business to meet what could have been a stimulated demand.

From the outset, this program did not consider what kind of “implicit endorsement or recommendation” that this program may have signaled to residents (Krijnen, 2018). In “Choice Architecture 2.0 Behavioral Policy as An Implicit Social Interaction”, Krijnen, Tannenbaum, and Fox, lay out a framework that may explain some unintended consequences that this program messaging could have implied (Krijnen, Tannenbaum, and Fox, 2018). By promoting this incentive (rebate), a voluntary program which essentially pays homeowners to do something they should just be doing anyways, the program may have unintentionally signaled that this action is not urgent, and is a sort of ‘above-and-beyond’ that people can pat themselves on the back for vs. an essential urgent action required of all to protect water quality. Introducing this incentive it may have also unintentionally influenced residents’ perceptions of attractiveness of the behavior (made them perceive it as undesirable). For example, seeing the government offer money in exchange for softener optimization, some residents may have interpreted optimization as a tradeoff wherein their water quality is diminished in exchange for the payment. And finally the last element for evaluating scalability, economics, may be as a contrast to the other elements favorable for scaling. Economies of scale could kick-in if expanded more broadly, and, considering about 15% of the total pilot project went into start-up expenses, replication would likely be cheaper.

CLARIFY MUNICIPAL COMMITMENT

This pilot project was conceived as a partnership effort; with the District providing the overall vision/guidance, funds, and technical training/tools/logistics, and the Municipalities providing administrative labor, brand recognition/credibility and local knowledge/connections, put towards the common goal of reducing water softener salt tributary to the pumping station and treatment plant. Partnering with a municipality offered direct benefits, like for example, name recognition (offering credibility), more people working on the program, and being able to cut checks and reimburse both providers and residents with less paperwork than would have been required for district accounting systems. Overall, both District and municipal administrators were happy with the partnership system established.
An assumption that was challenged early on, was the assumed connections each of the municipalities hold. Although the municipal governments did have brand recognition that paid off with outreach, we learned that not all of the partner municipalities had ways of contacting residents, and did not have readily available lists or contacts for getting in touch with commercial/non-residential establishments (didn’t know building manager at the high school, the largest water meter in the whole Village, or didn’t have mailing list for customers, for example). In addition to salt savings, hopefully seeking these lists and testing means of communications proved a useful capacity building exercise for work beyond the pilot.

The importance of maintaining open, timely communication was learned early-on, when a misunderstanding led to an advertisement misrepresenting the incentive. This type of issue could have been easily remedied by having more up front coordination to make expectations explicit in the original contract/agreement. From then on, regular check-ins with the District and municipal admins were set up, and messaging remained in alignment. Although all of the pilot program managers (both District and Municipal staff) found ways to maintain communication and efficiently coordinate, one point of improvement could have been getting the word out at the municipality beyond the directly involved staff – for example, in McFarland, district staff presented to the Village Public Works Committee, however were not able to make a presentation to the Village Board or other municipal bodies. It was not clear how much municipalities promoted the program internally among committees and municipal government to build awareness and ambassadors for the program.

Another point of possible improvement should this model be used in the future, is to clarify municipal commitment, especially as it relates to plumbing permits. A call from a resident mid-way through the program exposed an unforeseen incongruency – although the municipality was offering a $75 reimbursement for water softener check up and a $200 reimbursement for softener upgrade, they were still charging a $57 fee for having the permit to have the work completed. Future municipal rebate programs should consider waiving the fee or significantly lowering it.

PROVIDER ACCOUNTABILITY

In the spirit of this being a pilot program, the overall approach to working with providers (or some of whom optimization and working with softeners might have been completely new), was to be lenient, amenable, and flexible. To be a provider listed on Madsewer.org, all that was required was to attend a training and then say ‘yes, list me on the website’. Providers were then given access to documentation app – they did not have them sign any formal agreement to participate or abide by terms or protocols.

As a result, inconsistencies in provider buy-in emerged through the course of the program. For example, one resident commented, the “company I worked with seemed to not understand how the program worked... more education might be needed there”, in a program-participant follow up survey. Only one of the participating provider companies proactively reached out to their existing customers. Among the other participating companies that did exit interviews, although all cited having customer databases containing information about existing customers’ softener models, including rebate-eligible determined ‘clunkers’, none reached out or advertised the program to those existing customers. Information about being a provider for
this program, and even the optimization service itself were not added to company websites, and it was not clear if all intake/scheduling/receptionists staff at companies were aware of the program.

In the future, having a written agreement with providers that outlines the expectations of working in the program, which provides accountability and dispute resolution would be beneficial. During exit interviews, multiple participating service providers, despite extensive up-front coordination and communications about the program details and logistics, brought up questions that could have been resolved with an increased organizational-level commitment and early communication efforts. At a minimum, expectations concerning: the point of contact for the entire company, timing for submitting reports, customer service/messaging, whole staff communication (including scheduling agents/front office staff), service area/eligibility, quality standards for reports, and certification of adherence to standard optimization protocols, should be specified in the agreement.

Having a document that holds providers accountable to quality standards, training required to achieve those standards, and which confirms company-wide buy-in would be beneficial for program consistency and image among consumers. Utilizing a written agreement could also prove to be a useful tool for negotiating compensation for provider time, and confirming company buy-in. All participating providers at some point throughout the program, that optimizations were not prioritized because they were not making money on them, despite having verbally (or by email) agreeing to participate in the program at this rate from the start. Given discrepancy in early advertisements and confusion in the town of Dunn (‘free optimization’ vs. ‘free optimization *up to $75), the providers’ frustration with the rate makes partial sense, however, it doesn’t when considered in the context of the McFarland model, where providers were able to charge customers their full amount for an optimization, and the residents would recoup their $75 rebate later through the Village.

INCENTIVE STRUCTURE & AMOUNT
Between the two concurrently tested rebate structures (previously discussed in, Incentive Models, page 17 above), there wasn’t one that was obviously better than the other. No comments or complaints were heard from residents about wanting the other community’s rebate system. In the rebate participant follow-up survey, people who participated in the rebate program overwhelmingly said that the program was easy (only 2/100 respondents said the program was difficult. Non response bias was not conducted on the participant survey since the overall response rate was about 50%). Participants appreciated that they did not have to send anything in, that it was all handled automatically by the providers and the municipality. Both models proved to be about the same amount of administrative work. Overall, providers felt that it was confusing to have two different types of programs running at the same time, but didn't have a strong preference for one over the other. Both municipal program administrators and providers felt that the McFarland model (reimbursements) was more straight forward and transparent.

One of the main confusions (previously alluded to) in the Dunn (discount) model, was surrounding the discount for inspections. District and municipal staff had thought that providers agreed to a service call fee of $75 for an inspection, and were therefore advertising ‘free’ inspections/optimizations, however, the cost for
some service providers to inspect and guide a homeowner through optimization exceeded $75, so the homeowner ended up getting a bill for the remainder of their service call fee, not a free service as advertised. Although it’s hard to attribute this model as a causation, there was a correlation with a higher percentage of jobs overall being inspections/optimizations (60%, vs 14% in McFarland) vs. replacements.

While the McFarland (reimbursement) model was perhaps more straightforward overall than the discount model used in Dunn, the drawback was that homeowners had to pay the full cost up-front then wait to receive their reimbursement — a wait that was dependent on service providers completing their report and on municipal administrators approving it and processing it for payment. Questions about the delay in payment (usually due to providers not having submitted reports yet), were the most frequent reason municipal program admin. heard from residents. This should be considered when weighing which model to use going forward. Having to wait on receiving up to $275 back could be an issue (cashflow) in some circumstances, going against the goal of making it easier for residents to participate.

In a poll of self-screen takers mid-pilot (to find out why self-screen takers might not follow-through on their recommendation), one attributed their lack of follow-through to cost, which indicates that cost might still be a barrier for some people (rebate was not enough). The cost of a new softener or softener upgrade, even with the rebate, being too great a cost for the household was echoed in a handful of intercept interviews and also confirmed in national data, which shows that “fully 51 percent of owners in the lowest-income quintile spent less than $500 on improvements and repairs to their homes in 2019.” (Improving America’s Housing 2021, 2021). Future water softener rebate programs should consider, if they desire to expand access to softener upgrades for lower income households, that a reimbursement model may pose an additional barrier, the discount (or free service) model may prove more effective.

SCOPE OF INCENTIVE – INCLUDED EQUIPMENT
The rebate incentive was designed specifically for single-family home water softeners because commercial water utility accounts vs. residential have different drivers and barriers to action, and chains of command for decision-making. Commercial accounts in the pilot area were offered a free check-up during the pilot as a side part/separate program from the primary Salt Savers Rebate (see p.25). Water quality providers who participated in the program worked on this specific initiative reported feeling like providing this service wasn’t worth their time, since often they were not dealing with the decision-maker directly as is the case oftentimes, with homeowners. They indicated a preference to stick to residential market vs. what they called ‘lite commercial’, or in other words, softeners that are identical in size and model to residential units but owned by a company instead of an individual homeowner. They also indicated that having two programs with different incentive amounts was confusing. Turns out that having two programs between commercial and residential, when they are essentially the same equipment ended up creating confusion. Going forward, it is recommended to dig more into what would incentivize ‘lite commercial’ to adopt water softener upgrades, and/or to include these ‘lite commercial’ with any existing homeowner program due to equipment similarity.

Another challenge in scope of the program, was with which equipment was funded. Water softener interventions were the only appliance included the focus for simplicity, however this approach proved to be
overly deductive, not looking at water quality holistically. The pilot area was somewhat challenging to make recommendations in because some of the homes in the area had private wells (vs. a municipal drinking water distribution system), and therefore had inconsistent water quality. Some of the wells in the area had high iron to the point where some of the providers recommended to install an iron filter ahead of the softener, to keep the softener efficient longer. In a few cases, the homeowners were upset that their iron problem could theoretically be solved by running an inefficient softener, but that the ‘right’ thing to do as far as minimizing salt use was to install this additional device which was not covered by any incentive/program funding. In these instances, purchasing a $1,700-$1,800 iron filter to preserve softener efficiency, when the softener (running at a lower efficiency) could accomplish the same job didn’t make sense for the homeowners. In this pilot area, the number of these instances were small, but should be considered seriously if designing and rolling out a replica of this pilot elsewhere, since the efficiency losses could really add up; one provider quoted a maximum efficiency only about 2,800 grains/lb (vs. an efficiency goal of 4,000 grains/lb) for softeners being relied on for iron removal.

FOCUSING MESSAGING
Community based social marketing suggests having ‘asks’ be non-divisible, end-state behaviors (McKenzie-Mohr, and Schultz, 2014). In developing and implementing this program, it was not possible to meet all parties’ expectations for the program and focus in on single end-state, non-divisible behavior. Ultimately, messaging used for suggesting optimizations did not meet these two criteria, but messaging related to replacing softeners did. This may have contributed to a higher number of overall replacements (even though it is the more costly and labor-intensive action). The messaging for optimizations, (‘take the softener self-screen’) which was non-divisible, but not end-state and the messaging (‘get it checked’) was end-state, but divisible.

For future programs, we would recommend clarifying messaging. Throughout post-program evaluation (including, intercept interviews notably), a reoccurring theme was that homeowners believed the program didn’t apply to them because of the age of their house (“but my house is only 8 years old, it was just built) or age of softener (“my softener is still new- we just got it 5 years ago). Overall, people really didn’t think it was an issue unless their softener was old. This was perhaps reflected in the bias towards replacement participations in both the self screen and the rebate program.

For this program, offering the largest incentive getting old softeners out made sense on paper because of their potential for larger salt discharge reduction, however this may have altered perception, subsequently resulting in confounding the ‘check it’ messaging.

In the mid-pilot email poll of self-screen takers who had not yet converted their self-screen into action, among respondents for whom replacement was recommended (n=33), and those for optimization was recommended (n=15), open rates on the email were similar, about %60, and rate of clicking within the email were very similar, a little less than half of people who opened the email.
Table 10: Mid-Pilot Conversion Inquiry

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>No response (did not open email)</th>
<th>No response (opened, but did not click)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement Rec.</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td>Optimization Rec.</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

It’s a small population size, so hard to say for sure, but it appears that people who got a recommendation replacement were typically more likely to follow through on their recommendation than people who had optimizable units. This is in direct contrast to the early research done ahead of the pilot, the District’s 2019 Community Values Survey in which a random sample of adult respondents in MMSD’s service area generally said they would be more willing to have their softener optimized than to have it replaced. It is possible that the original question in this survey could have been flawed because it forced a binary, and didn’t provide an alternative option that might better reflect reality: *if it needs to be.*

Bottom line, any future reproductions of this pilot should focus on increase urgency in messaging and clarifying that all softeners need to be looked at.

Unanswered Questions - Directions for Future Research

Beyond considering the known learnings detailed above, unanswered questions including the following, should be evaluated before considering repeating or scaling another home water softener efficiency incentive program:

What are the real barriers to softener optimization and upgrade? Knowing more about the extent to which money is primary barrier for softener maintenance (and for who) is not known, but would be helpful in designing a more effective program. Community Based Social Marketing recommends a five step process in which identifying barriers precedes development of strategies so that the program (strategy) actually addresses the main thing prevention the desired action (McKenzie-Mohr, and Schultz, 2014). In formation of this pilot project, the strategy was prescribed without true insight into whether (and how) cost was a barrier (or for who). There was data to support willingness to participate in an incentive program, however research to truly investigate reasons for/or not maintaining softeners were not thoroughly interrogated. As a result, previously discussed in ‘Incentive Structure & Amount’ p. 39, experience in this study shows the inventive amount offered may not have been enough to nudge people for whom cost was a true barrier, and at the same time, for many residents, proved to be a useful bonus for something they already planned on doing, discussed in ‘Effectiveness’, p. 33. Designing a study that gathers information to the barriers to the specific actions directly, would likely increase program effectiveness.

What alternatives exist to meet home water quality needs beyond ion-exchange water softeners? During intercept interviews, nearly all respondents, intrigued about options to do their part on salt reduction asked about alternatives. The program website included vague wording about alternatives: “Other approved water treatment devices”, “approved by the State of Wisconsin for use in home plumbing applications”, leaving space for options that emerged to be considered eligible, but ultimately putting the research onus on
individual residents. Having more proactive information available would help residents make informed choices and possibly a greater salt reduction than through optimization or upgrade alone.

What are the costs and benefits/tradeoffs in soft water quantity reduction strategies, such as plumbing conversion to hot-only softening, or blending valves? Provider reports and self-screen questionnaires uncovered a high potential for chloride source reductions using these strategies, however, relatively little is currently known about the costs associated with these conversions and feasibility of them. It appears that equipment and skillset among professionals already exists, but are not widely used perhaps due to entrenched norms. Being able to clearly communicate to homeowners who risks (if any) and costs to expect would go a long way to advance these strategies.

One last area that could benefit from continued research and development is in monitoring chloride in wastewater. Continued development/refining of methods for monitoring and analysis techniques would make evaluation easier and cheaper. This pilot tested use of a freshwater conductivity logger in a wastewater environment in an attempt to secure additional data coverage beyond existing sampling points. Use of the logger, and how to handle the data was a huge learning curve. How to interpret this data and understand its viability is still ongoing. Outcomes, although not included in this paper, will nonetheless prove useful to future source reduction initiatives.

CONCLUSION

In this study, the efficacy of offering a limited-time rebate to incentivize home water softener improvement (optimization and upgrade) was evaluated. Over the two-year pilot, 210 different households participated, yielding an estimated reduction of about 45 pounds of chloride per day to the sewer system.

Overall, given the time commitment and cost compared to the estimated chloride reduction, only slight evidence of program additionality, anticipated issues with scalability, and the limitations and perceptions of voluntary-only programs, repeating a water softener incentive program should be approached cautiously, considering lessons learned through the pilot. Scaling this pilot to offer rebates more widely should be expected to yield sustainable (long-term) chloride reduction sufficient to impact influent chloride to the Nine Springs Wastewater Treatment Plant, however might prove useful in other areas where the conditions (public opinion demanding a rebate, opportunity for non-residential chloride reductions are limited, and small, short-term gains in water quality are the goal) are warranted. Overall, further research that helps evaluate approaches that incentivize longer-term, more sustainable reductions should be prioritized over investing more in additional voluntary optimization/reduction incentives.
Appendix A: Historical Outreach & Studies in Ps9 Service Area

Brochure sent out in 2003

Kegonsa Sanitary District Bill Stuffer – sent 2017
DATA COLLECTION (LOGGER OPERATING INSTRUCTIONS)
At: https://madsewer.org/logger-procedure

SPECIAL SAMPLING PROJECTS

Conductivity – Chloride Model Development Data Collection
To interpret the conductivity data, significant process and procedure, including developing a model to predict concentration based off conductivity in the wastewater environment, had to be developed. To build the model, a special sampling project was initiated in February 2021. Hourly grab samples were taken from wastewater at PS 9 over a period of six days using an ISCO multi-plex portable sampler (one 500ml sample per hour, each in a separate bottle) connected to the pumping station control monitors. After 24 hours, when the tray was full, the bottles were taken from the pumping station to the MMSD laboratory and a new tray of empty bottles was put in its place to begin the collection process for the current day. This was done every day except for Sunday, for six days starting February 2, 2021. The MMSD laboratory analyzed chloride concentration in these samples (n=116) using the same equipment and method as outlined above in Quarterly Sampling. A regression was completed using R Studio with the resulting data, yielding a piece-wise log-scale regression model with a breaking point. The regression had a very small bias (<1%) with very small residuals, so was therefore considered good. The slight bias that occurs due to the log transformation was handled through the "smearing coefficient" function.

Probe Validation Data Collection
In early Spring 2022, when initial analysis of the probe data began, there were only 6 points where quarterly billing samples, a known, trustworthy approximation of daily chloride (based on a flow-proportionate composite sample), and chloride data from the logger matched up. To build up a more robust pool of matching points, a special sampling project was initiated from 6/27/2022 – 7/27/2022, to collect additional daily composite samples. The procedure used was as similar as possible to the method used for quarterly billing samples. This effort yielded 13 additional samples to use for evaluating probe data.

DATA CLEANING & PROCESSING OVERVIEW
Full RMMarkdown documenting analysis steps is available as an .Html file upon request. Requests should be made to catherineh@madsewer.org. General summaries of analysis steps included in plain language below.

Summary of procedure for estimating concentration having collected conductivity data:

1) After collecting data from the logger to the data shuttle, 'offload' to HoboWare software
2) Use HOBOWare Conductivity Assistant to enter field calibration measurements to translate raw conductivity into specific conductance data.
3) Merge all specific conductance files using HOBOWare
4) Export full timeline of specific conductance data from HOBOWare file (.hproj) to .csv
5) Manually remove data gaps from data collection problems from specific conductance dataset
6) Read .csv files (full specific conductance, flow data, quarterly sampling points) into R Studio.
7) Use RDA Files: m_log_high.rda & m_log_low.rda from regression to estimate chloride concentration from conductivity

Summary of procedure for evaluating conductivity logger data validity, analyzing data and conclusions/recommendations for future use will be forthcoming in later publication.
Appendix C: Softener Training Materials

Example Class Advertisement

YOU’RE INVITED TO
Salt Reduction Through Efficient Water Softening

Thursday, March 19, 2020
Village of McFarland Municipal Center
5915 Milwaukee St., McFarland, WI 53558

Level 1 training: 8-9:30 a.m.
Level 2 training: 10-noon

Gain the knowledge and skills you need to help your customers reduce their water softener salt use in this free training. This training is now offered in two levels so attendees can choose the amount of training relevant to their work, so you can register for one or both levels.

Attendees who complete either level will have the option of being designated as trained service providers for participation in the District’s pilot softener improvement programs (see www.madsewer.org/SaltSavers for more information).

CONTINUING EDUCATION AVAILABLE

Attendees who complete both Level 1 and Level 2 training will qualify for 3.0 continuing education hours through the Wisconsin DSPS for the following certifications and licenses: Commercial Plumbing Inspector; Dwelling Contractor Qualifier; UDC-Construction Inspector; UDC-Plumbing Inspector; Journeyman Plumber; Journeyman Plumber-Restricted Appliance; Journeyman Plumber-Restricted Service; Master Plumber; Master Plumber-Restricted Appliance; Master Plumber-Restricted Service.

FREE REGISTRATION HERE:
www.madsewer.org/SaltSavers

For additional information, contact Emily Jones,
EmilyJ@madsewer.org or 608-709-1857.
Agenda

Agenda – Level 2 Salt Reduction Through Efficient Softening Training

Tuesday, Mar. 10, 10:30-noon | Madison Metropolitan Sewerage District Maintenance Facility

Instructor: Emily Jones, Pollution Prevention Specialist, MMSD

Handouts:
- Hardness test strip kit
- Evaluation flow chart with clunker list; time-clock ID pictures as attached resources
- Worksheet for notes on softener evaluations
- Customer information handout

Level 2 Training

10:00 – 10:20
Overview of water softener settings that affect efficiency

- Reiteration of definition of softening efficiency
- Efficiency affected by:
 - The amount of salt used to regenerate the softener (salt dosage) (gallon of gas)
 - The amount of hardness particles that the softener can remove between regeneration (grain capacity) (miles)
 - The buffer programmed into the softener to keep soft water from running out before regeneration (reserve capacity) (low gas light)
- Salt use affected by hardness setting (4-wheel drive)

10:20 – 10:35
Calculating water softener efficiency based on softener settings

- Why you might want to do this: Calculating efficiency can help you make recommendations for customers in a question of whether to replace the softener. It can also show the actual impact of

Service Provider Resources

Hardness lookup map:

Training Workbook

Training Slides
most current versions available at: https://www.madsewer.org/do-business-with-us/for-water-softener-professionals/salt-savers-training/

List of Certified Providers
https://www.madsewer.org/pollution-prevention/chloride/for-residents/find-a-trained-softener-professional/
Appendix D: Outreach Materials

Letter to Commercial Water Meters - McFarland

September 21, 2020

CAPITAL WATER SOFTENER INC
4909 TRIANGLE ST
MCFARLAND, WI 53558

Dear CAPITAL WATER SOFTENER INC,

The Village of McFarland is dedicated to protecting fresh water and keeping sewer bills low. That’s why we are partnering with the Madison Metropolitan Sewerage District and local water treatment experts to offer FREE water softener check-ups for all commercial buildings in the Village.

We’re asking you to schedule a water softener assessment for the property(ies) you own or manage, in the Village of McFarland. Getting your softener assessed only takes about 30 minutes, but it can go a long way in saving you time and money when it comes to refilling your softener. Oftentimes, a few simple settings adjustments can increase your softener’s efficiency.

It’s important to act now. Local lakes, streams and drinking water are experiencing rising levels of chloride, which comes from road salt and water softener salts. Tuning-up water softeners, even new ones, makes a difference in preventing future sewer bill increases, and protecting the environment.

Contact one of the following directly to schedule your free water softener assessment:

<table>
<thead>
<tr>
<th>Hellenbrand Water</th>
<th>Total Water</th>
<th>Capital Water Softener, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Zuhde</td>
<td>A.J. Jameson</td>
<td>Joel Wick</td>
</tr>
<tr>
<td>608-849-0928</td>
<td>608-221-2236</td>
<td>608-241-1511</td>
</tr>
<tr>
<td>dzuhde@hellenbrand.com</td>
<td>www.culligantotalwater.com</td>
<td>j.wick@capwater.com</td>
</tr>
</tbody>
</table>

We are encouraging residents and business owners to take advantage of this program before the end of the year. More information available at: https://www.madsewer.org/Business-salt-reduction

Sincerely,

Aimee Irwin, Assistant Public Works Director

Catherine Harris, Pollution Prevention Spec.

Madison Metropolitan Sewerage District
New program could save McFarland residents money while reducing pollution to local waterways

By Lucy Ripp
Aug 2, 2021
8 min to read

Get a free water softener inspection today!

Madison Metropolitan Sewerage District

Town of Dunn
Postcard to McFarland

Does your water softener use too much salt? Find out today!

Madison Metropolitan Sewerage District

McFarland

SAVE SALT. PROTECT FRESH WATER

McFarland residents whose homes are connected to the sewer system are now eligible for rebates for water softener evaluations, optimizations and replacements of inefficient softeners. These rebates are being offered as part of the Salt Savers program, a pilot program offered by the Village of McFarland and Madison Metropolitan Sewerage District to reduce salt pollution in freshwater streams from softeners.

HOW IT WORKS

If your home is connected to the sewer system (that is, you do not have a septic tank), take the steps below to get started in the program:

1. Take the water softener self-screen at this link: www.madsewer.org/SoftenerScreen.

2. Contact a service provider at the Salt Savers link below to carry out recommended improvements to your softener. Some services may be performed virtually.

After the service, McFarland will issue you a rebate of $75 for a softener evaluation or optimization, or $200 for the replacement of a softener determined to be inefficient.

Learn more at www.madsewer.org/SaltSavers
October 13, 2021

Dear Resident,

As a Pleasant Springs Sanitary District customer, you have an opportunity to receive a rebate for improvements made to your home water softener. Improving your water softener will reduce home salt use, protect local fresh water, and help avoid the need for expensive treatment technology to remove salt from wastewater.

Pleasant Springs Sanitary District is partnering with Madison Metropolitan Sewerage District, our local wastewater utility, to offer the Salt Savers pilot program. The goal of this program is to reduce the amount of chloride (a component of salt) that ends up down the drain. The wastewater treatment plant currently receives too much chloride and most of the chloride in the sewer system comes from water softeners.

In the Salt Savers program, a trained water softener service provider will assess your softener and make improvements based on its condition. The service provider may optimize your softener so it runs on less salt, or if your softener is inefficient, the provider will replace it with a new water softener (with an efficiency of at least 4000 grains per pound) or other water treatment device that reduces salt use. You will receive a rebate for the improvement made to your softener.

You are eligible to participate in this program if you live in the Pleasant Springs Sanitary District. The enclosed flyer includes more information about the program and how to participate. We have a unique chance to prevent chloride pollution in local freshwater bodies. We encourage you to take part!

Sincerely,

Linda Larson, Commissioner-President
John Barry, Commissioner-Secretary
Scott Haunersen, Commissioner

2083 Williams Drive, Stoughton WI 53589-3352
Phone (608) 873-3074 info@pssd-wi.org Fax (608) 646-0089
The Lookout McFarland Electronic Newsletter

Opt-in electronic newsletter distributed via email on Thursday every other week.

Fall/Winter 2020
https://www.mcfarland.wi.us/ArchiveCenter/ViewFile/Item/120

Winter 2020/Spring 2021
https://www.mcfarland.wi.us/ArchiveCenter/ViewFile/Item/127

And Spring/Summer 2021 edition
https://www.mcfarland.wi.us/ArchiveCenter/ViewFile/Item/137
The Outlook newsletter is a print distribution that is sent out three times a year in February, May, and September through the McFarland Thistle newspaper. Due to the longer distribution cycle, The Outlook focuses on overarching, seasonal, and long-term content.

Text included in August 2020 email (for email body):

Coming soon: Discounted water softener improvement services

Find out if your water softener is wasting salt in a new program coming to McFarland this fall. In an effort to reduce salt pollution the Village is partnering with Madison Metropolitan Sewerage District to offer McFarland residents discounts off of water softener evaluations, optimizations, and the replacement of old, inefficient softeners with higher-efficiency units. Learn more [here](#).

Full newsletter text (linked):

Adding heavy bags of salt to a water softener is nobody’s favorite chore. If you find yourself lugging multiple bags of salt to your softener every month, your softener might be inefficient and using more salt than it should. Not only does that mean more trips to refill the softener, it also means that more salt from your softener is ending up in the sewer system.

Madison Metropolitan Sewerage District, the local wastewater treatment utility, receives over 100 tons of salt at the wastewater treatment plant each day, mostly from water softeners. The plant isn’t designed to remove chloride (a component of salt) dissolved in water, so it passes through to local freshwater bodies. If chloride levels continue to rise, downstream waters could become too salty for fish and other aquatic life, and the District could face expensive upgrades to remove chloride that would increase your sewer bill. **Increasing the efficiency of your water softener, or reducing your soft water use, can minimize your salt use and keep our freshwaters fresh.** Many water softeners are not operating at their peak efficiency, meaning they use more salt than necessary. Even new softeners can be configured incorrectly, below their highest efficiency. If your softener is inefficient, you can significantly save on salt by optimizing your water softener to use less salt or by replacing it if it’s at the end of its lifespan. The Village of McFarland is partnering with the sewerage district to offer the Salt Savers pilot program, which encourages improvements to water softeners that reduce their salt use. This new program, which is already being tested in the Town of Dunn, will be available to McFarland residents later in fall 2020. **Steps to take now:**

- **Self-screen your home softener.** Is your softener more than 15 years old? Are you using more than one bag of salt per month? There are certain clues that indicate an inefficient softener. For general guidance on the condition of your softener, take a home softener screening found at www.madsewer.org/HomeSaltReduction. Knowing the state of your softener can prepare you to request a visit from a service provider as part of the pilot program.
- **Sign up for more information from the Village.** If you’re interested in participating when the program begins later this fall, let Village staff know so they can contact you when the program is launched. Contact Aimee Irwin at the Village of McFarland, Aimee.Irwin@mcfarland.wi.us, to sign up for updates about the program or to ask questions about the program.
Salt Savers Program Ends May 31st

Many water softeners at the Town of Dunn are outdated or not set to run at peak efficiency. This means more salt than is required to soften our water is entering our water. For residents connected to the sanitary sewer, salt that goes into water softeners ends up at the Madison Metropolitan Sewerage District (MMSD) wastewater treatment plant, which is not equipped to remove salt from water. Essentially, the salt ends up in our watersheds which can threaten freshwater wildlife.

The goal of the Salt Savers pilot program is to reduce chloride, a component of salt, from entering our freshwater resources by improving water softener efficiency. To encourage residents to participate in the program, the MMSD funds discounts on services and equipment to reduce salt input into the sewer system. Residents can receive a free assessment of their water softener by a trained, professional enrolled in the Salt Savers program. If a water softener is deemed too old or inefficient by the technician, softener replacements are eligible for a $200.00 discount at the time of service.

Is Your Well, Well?

When your property is on a well, you are your own water utility manager! Clean drinking water is essential to health.

It is recommended that private well owners test annually. Testing is recommended sooner if there has been flooding in the area or if any changes in taste, odor, or appearance of the water are noticed.

Contact Madison and Dane County Public Health at (608) 243-6357 or visit www.publichealthmadison.com and search “Well Testing” for more information. Public Health staff will be able to help discuss the types of tests you need based on your situation and their cost.

Receive a $10 Gift Card for Self-Screening Your Water Softener

For a limited time, eligible residents can get a $10 gift card to several McFarland businesses for screening their water softener with an online screening tool. To complete the self-screen tool, visit www.madison.org/pollution-prevention/chloride-for-residents/water-softener-efficiency or scan the QR photo below.

If you are interested in having your water softener evaluated, visit www.madison.org/pollution-prevention/chloride-for-residents/find-a-certified-softener-professional to find a service technician trained specifically for this pilot program. Waste less salt; protect freshwater — be a Salt Saver!

This program is set to end on May 31st, 2022!
Flier – McFarland
Delivered approx. 200 to McFarland House Café on 6/24 – they offered to staple it to all takeout bags (estimated 500/week). Approx. ___ more delivered on ___. This flier was handed out in all of the goodie bags which were part of public works day (approximately 100 bags made). Flier was also included as part of all hosebibb test kits mailed out to McFarland addressed throughout 2020 and 2021.

Salt Savers Pilot Program

Check your water softener, protect fresh water, get a rebate.

To help you boost your water softener’s efficiency and reduce your home salt use, the Village of McFarland is partnering with Madison Metropolitan Sewerage District to offer the Salt Savers pilot program. Here’s how it works:

1. Take the softener self-screen at www.madsewer.org/softenerscreen. You’ll get recommendations based on your softener condition and salt use, and determine your eligibility for a rebate.

2. Contact a trained service provider (listed on the program home page linked below) to carry out any recommended improvements to your softener.

3. If you’re eligible, the Village of McFarland will send you a rebate for the completed service: $75 for an evaluation/optimization, or $200 for the replacement of an inefficient softener with a new, more efficient unit.

By cutting salt, you can help protect water and keep sewer bills low. Visit the link below for more information and to set up an appointment.

MORE INFORMATION: www.madsewer.org/SaltSavers
Salt Savers Pilot Program

Check your water softener, protect our fresh water.

To help you boost your water softener’s efficiency and reduce your home salt use, the Town of Dunn is partnering with Madison Metropolitan Sewerage District to offer the Salt Savers pilot program. Here’s how it works:

1. Call a trained water softener service provider, listed at the web address below, to get a free water softener evaluation.

2. Your provider will take action based on your softener’s condition:

 - **Optimize**: If possible, your provider will optimize your softener to run more efficiently and use less salt. Even some new softeners can be optimized!

 - **Replace**: If your water softener is identified as an inefficient unit, you’ll receive $200 off the installation of a new, efficient water softener or other approved water treatment device by a trained provider.

By saving water softener salt, you’ll help keep sewer bills low and protect local fresh water. You’ll also save trips to the store and to the basement to add more salt to your softener. Visit the link below for more information and to set up an appointment.

MORE INFORMATION:

www.madsewer.org/SaltSavers
Kelsey Shepperd, Town of Dunn
(608) 838-1081, ext 206
kshepperd@town.dunn.wi.us
Hose Bibb Test-Kit & Self-Diagnostic Card
McFarland Chamber of Commerce Website

Support local business, reduce home salt use and protect waterways! Self-screen your water softener online and get a $10 McFarland Chamber gift card from Madison Metropolitan Sewerage District.

Take survey now.
Village of McFarland Utility & MMSD Salt Saver Pilot Project

How to participate:

1. Call 608-571-6210 to schedule a water softener evaluation with All Comfort Services.
2. Our plumbers will determine if your softener can be optimized. If it can, pay us for the completed work. Then, we will submit an application via an app to the Village of McFarland Utility so that you can be reimbursed $75.
3. If our plumbers identify your water softener as inefficient and deemed a “clunker,” we can replace it during the appointment. After the work is complete, and you’ve paid us, we will submit an application via an app to the Village of McFarland Utility so that you can be reimbursed $200.

Salt Saver Pilot Project

The Salt Saver Pilot Project is part of a partnership with the Village of McFarland Water Utility and the Madison Metropolitan Sewerage District (MMSD).

The MMSD program hopes to improve water softener efficiency, with an end goal of reducing chloride in the sewer system. The sewer system is not able to process chloride and as a result it goes directly in lakes, streams and drinking water.

“Optimizing softeners for household water use and local water hardness can reduce salt use by 25% to 50%. If your household softener uses 1 bag of salt per month or more, have a professional tune it up or replace it with a high-efficiency model.” - Wisconsin Salt Wise

For more information, go to: www.allcomfortservices.com/plumbing-water-softeners/

CALL 608-571-6210 today!

Village of McFarland Utility Customers:

Are you participating in the Salt Saver Pilot Project?

If you qualify, you could be reimbursed for a:

- $75 water softener evaluation
- **OR**
- $200 water softener replacement.

Turn over for details.

CALL 608-571-6210 today!
Event Outreach & Passive Signage

Public Works Day

https://www.hngnews.com/mcfarland_thistle/article_b33cd824-4ee3-51f2-af4c-1b7ccc837dff.html

Public Works Open House was held Saturday, May 22 from 8 a.m. to noon, at the Public Work Department’s headquarters at 5115 Terminal Drive. Due to COVID restrictions, the event was drive-thru only. It included: equipment displays, giveaways for all ages (including snacks), informational handouts to increase awareness of the Public Works Department’s work.

Food Cart Frenzy – 9/15/2021
This event was put on by the Lions Club. Although it was a well-attended local community-event, it was not a great venue to engage with passerby or attendees.

Library, Ace Hardware, Village Public Works Building, Village Hall?

Farmer’s Market - (Thursday) from 2-6 p.m throughout the summer 2021.
We found that this was a difficult spot to engage with folks at. Towards the end of the summer, we just went to put up a sign, and did not stay to try and talk to folks.
Trunk or Treat – 10/30/21
There were literally thousands of people at this event. P2 specialists handed out >400 informational fliers specific to pollution prevention, the rebate program, and logoed items.
Social Media- McFarland & Dunn Accounts
Social Media – District Accounts (excerpts)

Madison Metropolitan Sewerage District
@MadMetroSewer

Madison Metropolitan Sewerage District
July 22 at 3:17 PM

Every bag of salt you put in your water softener ends up in local freshwater streams, and the sewer district can't remove this extra salt. You can protect our lakes, streams and drinking water by using only as much salt as is necessary in your home. Find tips to reduce salt in your home at https://www.madsewer.org/HomeSaltReduction

2:25

MADMETROSEWER
Posts
Follow

Madison Metropolitan Sewerage District
@madmetrosewer
Apr 21

All the salt you put in your water softener ultimately ends up in local waterways, so it's important to ensure your water softener is efficient. Not sure if you have a slacker on your hands? Use our self-screen tool:
buff.ly/3pg6S90
#EarthDay2021 #onewater #cleanwater

4 likes

madmetrosewer Salt your fries, not our lakes! Every bag of salt you put in your water softener ends up in local freshwater streams, so it's important to... more

6 days ago
Appendix E: Notes on Use of GIS

- working with multiple municipalities, running different format programs, we had to build surveys for each one, meaning the providers had to select a different survey depending on where they’re at.
- Reverse geocoding wasn’t an option – created an issue.
- Hired Platform Engineer Consultant contract to help us get it off the ground
- Republishing
- Integromat was used as a substitute for Microsoft Azure. We couldn’t get Azure because it would be a change through our IT Department to the Microsoft contract, but Integromat was an independent subscription $9/month. Integromat is hosted in Czech Republic, we learned later that all web traffic from any IP in the Czech Republic is blocked on MMSD network, so we could only work on this program when we were outside of the district, WFH – discovered this after already having invested because of the pandemic and working from home

-
Example Self Screen Feature Report

Madison Metropolitan Sewerage District

WATER SOFTENER SELF-SCREEN SUMMARY and REBATE INFORMATION

Thank you for completing the online water softener self-screen! By assessing your water softener and your home salt use, you’ve taken the first step to protecting local streams from salt pollution.

To learn more about reducing salt use in and around your home, visit www.madsewer.org/HomeSaltReduction

Contact information:

<table>
<thead>
<tr>
<th>Name:</th>
<th>Town of Dunn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email address:</td>
<td></td>
</tr>
<tr>
<td>Street address:</td>
<td></td>
</tr>
<tr>
<td>Municipality/sanitary district:</td>
<td>Yes</td>
</tr>
<tr>
<td>Connected to sewer system?</td>
<td>Yes</td>
</tr>
<tr>
<td>Eligible to participate in pilot?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Discount qualification

Based on your responses to the self-screen, you preliminarily qualify for a $200 discount off the installation of a new, efficient softener by a trained service provider. The service provider will confirm that you qualify for this service, and the amount is subject to change if your service provider determines that any of the qualifying criteria in this report is inaccurate.

Your recommendations:

Based on your responses to the softener self-screen, we recommend you take the actions below to ensure that your softener is using as little salt as possible.

Commission President: Thomas Eulof
Chief Engineer: Michael Viele, PE.

69
Appendix F: Full-Line vs. Hot Only Cl- Reduction Potential

Softening only hot water puts the chloride concentration in the range of compliance with water quality standards, while softening both hot and cold results in a concentration above the current 395 mg/L standard the District is working to achieve.

Pursuing a tactic that encourages softening less water takes pressure off of installing high-efficiency softeners and subsequently maintaining high efficiencies as the softeners inevitably age and lose efficiency. The following comparison illustrates how when less water is softened overall, even lower-efficiency softeners can produce an average concentration in discharge that is within the target range.

Comparison:

<table>
<thead>
<tr>
<th></th>
<th>40% of home water softened; 4000 grain per pound softener</th>
<th>90% of home water softened; 4000 grain per pound softener</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds of salt per gallon of water softened at 25 grains per gallon hardness</td>
<td>160 gallons softened per pound of salt</td>
<td>160 gallons softened per pound of salt</td>
</tr>
<tr>
<td>Gallons water softened per month if total water use of home is 3800 gallons per month*</td>
<td>1520</td>
<td>3420</td>
</tr>
<tr>
<td>Salt use per month, per home</td>
<td>9.5 pounds per month</td>
<td>21.4 pounds per month</td>
</tr>
<tr>
<td>Total salt use per month among 747 new homes/year**</td>
<td>7097 pounds per month</td>
<td>15,986 pounds per month</td>
</tr>
<tr>
<td>Chloride contribution to plant per day (avg.)</td>
<td>140 lbs. per day</td>
<td>314 lbs. per day</td>
</tr>
<tr>
<td>Difference in chloride mass contribution</td>
<td></td>
<td>174 lbs. per day</td>
</tr>
<tr>
<td>Average chloride concentration</td>
<td>180 mg/L</td>
<td>405 mg/L</td>
</tr>
</tbody>
</table>

*Assume 3800 gallons of water used per month by these homes (50 gallons pp/day * 2.5 people per home * 30.5 days/month)

** Assumes According to Wisconsin Builders’ Association, there were 1245 new single-family housing permits in Dane County in 2019. Assumes 60% of those were in the service area – 747 homes
REFERENCES

https://docs.legis.wisconsin.gov/statutes/statutes/283

https://docs.legis.wisconsin.gov/code/admin_code/nr/100/106

Wis. Admin. Code § NR 106.90 (2023)

Wisconsin Department of Natural Resources (2014). *DNR’s Recommendations for PMPs and SRMs for Arsenic, Chloride, Copper and Mercury Variances*. Madison, WI: Department of Natural Resources Bureau of Water Quality Program Guidance Wastewater Program.
GLOSSARY & ABBREVIATION LIST

DNR – Wisconsin Department of Natural Resources

EPA – also known as US EPA, the United States Environmental Protection Agency

GPD – Gallons per day. How wastewater flow was measured for this study.

High Efficiency Softener – A water softener that removes 4,200 grains of hardness per pound of salt or greater is considered a high efficiency softener. Older model softeners usually remove 0-3500 grains per pound of salt.

MMSD – Madison Metropolitan Sewerage District

MWU – Madison Water Utility

Non-parametric statistical technique – a statistical technique that does not depend on the assumption that measurements fall into a “Normal Distribution”

Optimized – in the context of water softener optimization, means that the water softener’s operating parameter, pounds of salt used per cubic foot of softener resin, will be set in existing water softeners to an agreed upon amount which will be lower than the typical settings of older water softeners

Service provider/Water quality professional – people who have expertise and licensure in water softener appliances and/or plumbing.

Sewershed – an area where all wastewater drains to a single manhole for the sanitary sewer system

WPDES – Wisconsin Pollutant Discharge Elimination System
Attachment E: Summary of Sewer Use Ordinance Reporting 2021-22
MMSD Sewer Use Ordinance Chloride Reporting
2021/22 Reports Summary

In 2015 the District modified its Sewer Use Ordinance to require owner communities to complete the following reporting requirements annually:

4.7.2 Chloride Reduction.
(a) All Community Customers shall undertake efforts to reduce chlorides into the Community Sewers including the source reduction measures set forth in Wis. Admin. Code § NR 106.90 as appropriate, measures to reduce inflow of road salt laden water into Community Sewers and measures to reduce the direct drainage of road salt laden water from storage or truck loading into Community Sewers. Each Community Customer shall notify the District annually of measures taken.

(b) All Community Customers that own groundwater supply wells shall analyze at least one sample from each well annually for chloride and shall report the results to the District by March 1, for the preceding year.

(c) All Community Customers that hold a municipal separate storm sewer system (MS4) permit from the DNR, and report on deicing activities as part of their MS4 reporting requirements, shall send a copy to the District at the same frequency and at the same time that a report is submitted to DNR. Submittal may be in electronic form as a PDF.

In 2022, District staff set up an online reporting form to partially automate a reporting reminder system. Results from the first year are summarized below:

To date, 8 out of the 19 communities within the district reported on Section 4.7.2 (a) and (c) of the SUO Reports for 2021&2022 (note: 2022 reports are not technically due until March 1 2023).

Of those who responded, 5 reported sewer maintenance activities to limit I&I. The most common practices listed was using video monitoring to detect unwanted inflow or infiltration and take corrective actions. A few communities cited using city staff and engineering firms to conduct manual inspections of pipes and manholes.

While only 2 out of the 8 communities reported having a written winter maintenance plan, several others reported on at least having some of MMSD’s recommended best management practices (BMPs) in place within their winter maintenance practices. Of the 8 communities, 5 of them reported having plow drivers, operators, and supervisors attend winter maintenance training classes, as well as annually calibrate their salt spreading equipment. Three communities reported pre-wetting their salt prior to road application. Two communities reported using pavement temperature sensors to better inform their maintenance practices. Four of the eight communities reported using the Dane County Application Rate charts to apply deicers such as salt, beet juice, hot mix, etc. to the roads. Additional comments made about winter maintenance practices included plans to cut down salt spreading on residential roads by only spreading on hills and certain intersections to reduce the town’s salt usage.
For community facility improvement, one community reported that their city staff worked with Allison Madison to conduct audits on the city water softener usage, but no clear, easy upgrades were noted in the audits.

Outreach efforts made towards homeowners was reported by 6 out of the 8 communities. The most common methods of outreach reported was through social media, newsletters, and educational flyers included with utility bills about reducing salt on roads and private property. Reported social media efforts included creating new Facebook pages, Facebook posts, and town website posts. Holding informational town meetings was also reported along with a 10-part virtual presentation series provided by one community’s library. Two of the reporting communities that did have proof of source reduction action & outreach were those that the District partnered with via Innovation Grants to pilot the Salt Savers program (a home softener rebate program to encourage voluntary softener evaluations and replacements), a largely District-led effort.

Outreach efforts made towards businesses and property managers was reported by 4 out of the 8 communities, however few specifics or examples/proof were included in the reports. This outreach included calls and emails sent out to businesses about Saltwise trainings, social media posts on Facebook and city websites, and the inclusion of local businesses in receiving the town’s newsletter, which provides educational materials and encouragement to take part in water softener programs. One community also mentioned that if it were not for the post-pandemic timing, the city would have joined with MMSD to create a pilot program for reducing salt usage of commercial and industrial customers.

2021/22 (to date) communities that submitted reporting include: Village of Cottage Grove, Fitchburg, Middleton, Monona, Verona, DeForest, Dunn, Dane

Conclusion & Recommendations

On the whole, response rate was low: reports were only submitted by about half of communities. Reports submitted were sparse (as you can see in the transcriptions of answers below), and reported very little meaningful chloride reduction activities aside from ones led by the District. So far, requiring reporting has not done much to stimulate action on its own. We will report back next year, after the automated reporting system has been in place longer, to see if numbers or quality of reports improve. This finding is important because it lets us know that providing outreach ‘tool kits’ to owner communities is not enough. Meaningful action takes partnership and investment by the District.

Transcription of reporting form answers:

Source Identification - Answered: 1/8
Comments:
- No actions taken
- None at this time
- No info is available
- None
The Town of Dunn has participated in a grant program with MMSD to reduce chloride into the sewer systems by offering free water softener evaluations and $200.00 towards replacement of an inefficient water softener. MMSD's monitoring stations collect data about the chloride in the Town's water and identified that the primary source of large amounts of chloride was coming from inefficient water softeners. Since the program has been implemented, a reduction of chloride has been seen from the collection data.

Sewer Maintenance - Answered: 5/8

Comments:
- None listed
- Flow monitoring completed two years ago. Staff regularly visually inspects manholes in rain events and we rehabbed 27 last year (typically 20 - 30/year).
- Increase video audits of sewer mains to identify I/I for repair.
- The Village Utilities uses a televising camera to detect any inflow or infiltration in the sewer system roughly 10% of the system is televised a year. Actively replace open pick hole manholes or broken manhole castings with Mr. Manhole.
- We video one third of the system annually. We have used this info to create a system dashboard. We are using this to prioritize lining and other repairs. Currently lining areas with high I & I as our priority.
- Engineering firms have been hired to conduct studies about I&I, pipes have been relined in one sanitary district, manhole covers have been updated where feasible, the Capacity, Management, and Operational Maintenance (CMOM) reports are followed.

Winter Maintenance Practices

<table>
<thead>
<tr>
<th>BMP</th>
<th># reported ‘yes’ (out of 8 respondents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Have a written winter maintenance plan</td>
<td>2</td>
</tr>
<tr>
<td>2) Plow drivers/operators have attended winter maintenance training classes</td>
<td>5</td>
</tr>
<tr>
<td>3) Supervisors have attended winter maintenance training classes.</td>
<td>5</td>
</tr>
<tr>
<td>4) Calibrate salt spreading equipment annually.</td>
<td>5</td>
</tr>
<tr>
<td>5) Pre-wet salt before application to roads.</td>
<td>3</td>
</tr>
<tr>
<td>6) Use pavement temperature sensors.</td>
<td>2</td>
</tr>
<tr>
<td>7) Use Dane County Application Rate charts to apply deicers</td>
<td>3</td>
</tr>
<tr>
<td>8) Anything else not listed above – Please tell us:</td>
<td>Operations dept. received a Dane Co Climate Champion award for street salt reduction in 2021 • We have calibrated equipment, not in 2021. • We have implemented a plan to only salt are hills and certain intersection not all residential roads. this has greatly reduced the amount of salt we use. • The Town's 2022 MS4 report is not due until March 31st, 2022. We need January, February, and March road salt usage to complete</td>
</tr>
</tbody>
</table>
Community Facility Improvement - Answered: 3/8 (basically just 1/8)

Comments:
- City staff partnered with Allison Madison to audit city softener usage. No clear easy upgrades were noted.
- None in 2021.
- The Town Hall does not have a water softener and it not connected to the sanitary sewer system.

Outreach to Homeowners - Answered: 6/8

Comments:
- Social media and educational materials on reducing road salt & salt on private property.
- An informational flyer was included with the April utility bills. Informational meetings were held with Allison Madison from Saltwise.
- Village promotes MMSD initiatives via social media posts, talk about salt use via social media posts, sweep the salt flyer, also providing a salt barrel at the yardwaste site for left over salt where residents can bring their salt instead of wasting it on the driveways or sidewalks or throwing it way.
- The City has done outreach through our website and via Facebook on the 'Sustainable Monona' page. Facebook.com/SustainableMonona/
- 10 virtual presentations through the Verona Library adult programming. These presentations were primarily geared towards supplementing the MAMSWaP Education & outreach program for our MS4 permit. At the end of each of my programs, I provide reminders of various aspects of water conservation. I have attached as an example of the last presentation I did in 2021. (See slides 26 & 27). I've worked with the Verona Library to preserve the relevant presentation. Here is a link to the library website where you can find the currently available presentation recordings. Be sure to scroll down a bit to see the presentation recordings. https://www.veronapubliclibrary.org/research/verona-community. Currently there are 4 presentations available at this web site.
- The Town of Dunn regularly communicates with residents regarding chloride (and phosphorus) reduction via biannual newsletter mailings, Facebook posts, website information, Town meeting presentations, and through email or face to face encounters with residents.

Outreach to Business & Building/Property Managers - Answered: 4/8

Comments:
- MMSD was hoping to do a pilot program with Middleton commercial and industrial customers but felt that it was not the right time with COVID impacts.
- Sent emails and calls to businesses about the salt wise trainings held in Deforest.
- The City has done outreach through the website and via Facebook on the 'Sustainable Monona' page.
- Businesses are included in the mailing of the Town's biannual newsletter. Businesses connected to the sanitary sewer have also been sent mailings regarding the Town's water softener program urging them to participate in an evaluation, optimization, or replacement of an inefficient water softener.