Energy Management Master Plan Update

Commission Meeting 24 June 2021

Context

- The 2020 Energy Management Master Plan is ongoing
- This presentation serves as background info for upcoming Capital Improvements Planning

Project Motivation

- Aging infrastructure is the primary driver
- Not seeking projects just to make energy improvements

Background Review

- Outputs:
 - Quantify status quo & future energy needs
 - Identify alternative strategies to advance District goals and policies
 - Prioritize alternatives based on impact, complexity, and cost
 - Provide business cases for alternatives with highest expected value

Background Review

• In Scope:

- NSWTP areas not in other projects
- Considerations:
 - Reliability & resiliency
 - GHG
 - Cost
 - Efficiency & demand
 - Increase renewable energy use
 - Increase renewable energy generation

• Outside Scope:

- NSWTP areas in other projects
- Pumping stations/collection
- Considerations
 - Energy independence
 - Energy neutrality
 - Backup generators

Technology & Solution Evaluation

- Technology:
 - Equipment & Processes
 - Energy using
 - Energy generating

• Solutions:

- Partnerships
- Business models
- Grants/funding

Evaluation Process

Evaluation Decision Tree

- 1. Enhanced Baseline*
- 2. Maximize renewable energy production and consumption
- 3. Grid independence
- 4. Reduce infrastructure complexity*
- * considered with and without large solar

Enhanced Baseline

Maximize renewable energy production and generation

• Grid Independence

Reduce Infrastructure Complexity

- 1. Enhanced baseline*
- 2. Maximize renewable energy production and consumption
- 3. Grid independence
- 4. Reduce infrastructure complexity*
- * considered with and without large solar

- Heat & Power
 - Greatest infrastructure needs
- Exporting biogas
 - Lower lifecycle cost
 - Reduces infrastructure
 - Higher cost volatility
- Greatest GHG impact
 - Use biogas for co-generation
- Increasing renewable generation
 - Look at RER with MG&E

- Energy resiliency
 - Backup generation most effective
- Energy independence
 - Not cost acceptable
 - Increases infrastructure complexity
- Effluent pumping
 - Discontinue BMC forcemain
 - Less pumping
 - Less treatment

• Using vs Selling Biogas:

- Overall economic result is similar for each
- Energy implications are very different
- Each pathway advances District outcomes, but in different ways
- <u>Need leadership/commission guidance</u>

Sensitivity Analysis Combined NPV

Madison Metropolitan Sewerage District

50% Estimating Contingency (on Capital Cost) 30% Estimating Contingency (on Capital Cost)

Net Change in Electricity Production or Purchase

2040 GHG Emissions (MT CO_{2e}/year)

Status Quo	Alternative 1 w/ large solar (use biogas on site)	Alternative 4 w/ large solar (sell biogas)
34,340	20,320	27,420

*assumes MG&E energy mix does not change **can purchase "green energy" for extra \$0.01/kWh

Large Scale Solar

- Renewable Energy Rider (RER) program
 - Partnership with MG&E
 - MG&E owns and operates the infrastructure
 - MMSD provides land
 - Can include NSWTP and pumping stations
 - Establishes long-term, stable power price
 - Supports development of renewable energy generation

- Reliability
 - All combinations yield **system reliability** improvements through simplification or replacement of aging infrastructure
 - Simplify digestion
 - Simplify/improve heat loop
 - Replace boilers and cogeneration
 - Simplify effluent pumping
 - Replace biosolids dewatering and reduce biosolids hauling

Resilience

- Solar does not add energy resilience
 - Need to include battery storage
- Cogeneration adds limited resilience (i.e. not reliable)
 - Very few utilities rely on cogeneration for backup power
 - Requires complicated programming/controls
 - Black start of cogeneration is difficult

- Resilience
 - Backup generators are the simplest, least cost means of adding system resilience
 - Generator lease
 - ~\$35,500/year per MW
 - MG&E owns and maintains
 - Generator purchase
 - ~\$400,000 per MW (10-12 year payback)
 - MMSD owns and maintains

Next Steps

- Complete master plan (August 2021)
- Facility planning, design and construction
 - Implemented in several phases

Questions & Discussion

Madison Metropolitan Sewerage District

- Is any portion of this study considered unacceptable and needing reconsideration?
- Is there an implication in either of the recommended pathways that the commission is uncomfortable with or does not fully understand?

