Yahara WINs Executive Committee Meeting 03/19/2019

Agenda item: Yahara Pride Farm 2019 Composting Agreement

Attachment(s):

- Year 1 compost project summary from Yahara Pride Farms
- 2019 Compost Project Agreement for signature

Background:

In 2017 Yahara Pride Farms submitted a grant proposal to Yahara WINS, Dane County and Clean Lakes Alliance, seeking a total of $148,400 in funding to support a two-year manure composting project.

Yahara WINS, Dane County and the Clean Lakes Alliance responded by supporting the project as it has the potential to move the needle in terms of how solid manure is managed.

Yahara WINS agreed to fund $42,800 in 2018 for the operating expenses associated with the first year of the project with grant assistance from the 2018 MOU agreement with Clean Lakes Alliance.

Information generated during the first year of the project has already helped farmers better assess composting as a manure management alternative by providing information on the operational, economic and environmental aspects of composting and helped secure additional farms for composting in 2019.

Yahara Pride Farms is requesting renewal of a contract between Yahara WINS and Yahara Pride Farms to provide funding for the project operating costs for the second year of the project at $56,000. Execution is subject to review and approval of the final contract language by Yahara WINS counsel. The 2019 operational costs will be funded using a combination of funds included in the Yahara WINS approved 2019 budget for this purpose.

Alternative #1: Yahara WINS executive committee propose alternative contract language for review and approval by Yahara WINS counsel

Recommendation: Allow the Yahara WINS Executive Committee President to execute the attached contract between Yahara WINS and Yahara Pride Farms contingent upon review and acceptance by Yahara WINS counsel.
Background:
Yahara Pride Farms (YPF) is a farmer-led non-profit organization that evaluates and promotes management techniques and technologies that can reduce phosphorus loss to surface waters in the Yahara Watershed. Over the past 5 years, YPF has gained national recognition for its efforts to improve soil health and water quality, through the adoption of many innovative management practices including composting.

Windrow composting (controlled decomposition by piling organic material in rows and turning regularly to aerate) is an ancient and relatively cost-effective method of processing animal manures. Composting can make manure nutrients easier to handle and transport. Although composting does not reduce phosphorus from manure, manure windrows dry down and decrease in volume by approximately 50% through the aerobic oxidation of organic materials. The resulting final product is dryer, easier to spread and has a higher concentration of phosphorus and other plant nutrients. Compost also is a valuable resource with market potential, used by farmers, landscapers, nursery managers, greenhouses, engineers and road-building contractors to improve soil fertility, health and structure.

In addition, compared to raw manure, compost offers farmers additional flexibility for land application and allows greater precision to target application to fields where P may be low. The final product is drier and easier to manage. During the composting process, manure windrows dry down and decrease in volume by approximately 50% reducing hauling costs. In addition, compared to raw manure, it is less “hot” (containing less nitrogen) and can be spread onto alfalfa fields without damaging the growing plant tissue.

To manage compost windrows effectively, they should be turned weekly. This is accomplished by use of a “compost turner,” a large piece of equipment that straddles the windrow. As the windrow is turned, oxygen is added, and waste gases are allowed to vent, speeding decomposition. For the research project, YPF farmers rented a compost turner owned by a small company that circulates across the state. However, scheduling weekly turns for all three farmers was not possible resulting in a less efficient composting process.

In 2017, Jeff Endres, YPF President and co-owner of Berryridge Farms decided that if composting solid manure in the Yahara Watershed was going to advance, farmers needed more reliable access to a compost turner. Jeff decided to contract with a local welding company to build a compost turner that could be made available to farmers within the Yahara watershed. Compared to a traditional turner, this turner is uniquely designed and engineered, allowing for a complete turn in a short amount of time. Its paddles are grooved and designed to aggressively aerate the windrow. The turner was also designed so that it was entirely mobile, it fits on a variety of tractors, is road legal and can easily travel from farm to farm to encourage equipment sharing. The turner was designed by Jeff and others working on the project and he and his family financed the entire project at a cost of $100,000.
Interim Progress Report:
Yahara Pride Farms has successfully completed the first season of the Winter Bedpack Manure Composting Trial. During the fall of 2017 through the summer of 2018, a total of 3,582 cubic yards of bedded pack manure were diverted from late winter land application and processed into compost on pre-approved in-field windrow sites.

The goals established in the grant proposal was to work with 9 farms with an average of 220 cubic yards of bedded pack manure per farm (a total of 1980 cubic yards). In the first year of the study the project was implemented on 9 cooperating farms, which was a goal outlined in the initial proposal. The amount of material composted greatly exceeds the goals of the program (3,582 cubic yards actual verses the 1980 cubic yard goal). The composting windrow sites were reviewed and approved using the Natural Resources Conservation Service Temporary Manure Stacking conservation practice standard to minimize the potential for negative environmental impact.

Bedpack manure was aerated (turned) multiple times until a stable compost product was produced OR the windrow would no longer generate heat. Compost was land applied according to a Nutrient Management Plan between July and November. The following is a summary of the lessons learned during the first year of late winter composting:

Lessons learned:
1. The raw compost recipe (composition) is critical in the late winter/early spring period. The compost must have a substantial amount of carbon (straw/cornstalks) in the windrow to improve aeration and minimize saturation. Windrows with appropriate carbon levels heated quickly/consistently driving off moisture and resisted saturation by rain.
 - Adding additional carbon early in the composting process could stimulate the heating of windrows.
 - Compost windrows that were allowed to go dormant were difficult to revive if the material was allowed to collect moisture.
 - Once warm weather arrived it was possible to quickly revive dormant windrows that had adequate (visible) carbon in the mixture (Rule of thumb: if the compost looks like a manure pile with some bedding mixed in there is not enough carbon).
 - Semi-liquid manure can be built into a composting windrow with management.
 - One participant created side by manure lanes with semi-solid manure that would not remain in a stack when placed for composting. The “loose” manure was allowed to age for a week and carbon material was then added to each windrow and turned. After adding 2 batches of carbon and 2 turns the adjoining manure lanes were solid enough to be built into a single windrow.

2. Timely turning (aeration) of windrows results in a more consistent composting process. Windrows that could not be turned due to site wetness did not mature into compost as fast and resulted in a lower quality final product.

3. Composting sites should be placed on level, firm sites (preferably a hard surface or sod cover).
- A windrow with a slight incline became difficult to turn when the frost came out of the ground due to the slippery soil surface.
- Another site was placed on an irregular plowed surface. During compost turning on this site cold/wet soil material was picked up and mixed into the windrow and significantly reduced the compost temperature/decomposition rate.

4. Compost windrows pose a lower environmental risk than long term stacking of raw manure.
 - If composting windrows are built with sufficient carbon and immediate heating occurs there is little to no liquid discharge from the site.
 - Even dormant windrows lost minimal amounts of leachate (liquid) if some heating had occurred prior to going dormant.
 - A soil nitrate test of a site with prior composting history yielded 3-5 ppm.
 - Nitrate N in the top 6 inches of soil (10 ppm or higher is typical for corn fields).

5. Compost with a Carbon to Nitrogen Ratio (C:N) of 20:1 or less was considered mature and ready for land application.
 - Most windrows were able to achieve this C/N ratio, which ensures that Nitrogen will be available to crops when the compost is land applied.

6. Composting of bedpack manure reduced the volume of the windrow by 50-60% (visual estimate).
 - Mature compost windrows were noticeably smaller and easier to load into the spreader due to the loose/friable texture of the material.
 - Windrows that did not fully mature typically had fist size balls of material.
 - The immature compost “clods” of material did not spread as uniformly when compared to mature compost.

SUMMARY:

- Bedpack manure can be successfully composted in the field during late winter.
- Composting under less than ideal conditions does require additional attention to detail when siting, creating and managing the compost windrow.
- Late winter outdoor composting takes at least twice as long to complete when compared to composting under a roof and results in a less uniform product.
- Winter composting of manure is more expensive for the farmer when compared winter spreading of manure. The cost of additional carbon material (bedding), building the windrow and turning the compost increases manure handling costs when compare to direct land application.
The following table summarizes the before and after nutrient and moisture content of the each compost windrow.

2018 Compost Analysis

<table>
<thead>
<tr>
<th>Farm</th>
<th>Moist.</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>C:N</th>
<th>Moist.</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>C:N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73.6</td>
<td>11.3</td>
<td>5.2</td>
<td>14.8</td>
<td>--</td>
<td>39</td>
<td>10.3</td>
<td>27.4</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td>35.9</td>
<td>6.5</td>
<td>4.2</td>
<td>11.7</td>
<td>22</td>
<td>62.3</td>
<td>6</td>
<td>19</td>
<td>25:1</td>
<td></td>
</tr>
<tr>
<td>3*</td>
<td>76.8</td>
<td>12</td>
<td>4.9</td>
<td>15.5</td>
<td>--</td>
<td>67.2</td>
<td>7.8</td>
<td>6.8</td>
<td>37:1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>64.1</td>
<td>9.3</td>
<td>6.6</td>
<td>8.7</td>
<td>42:1</td>
<td>51.1</td>
<td>10.6</td>
<td>14.5</td>
<td>24:1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>69.7</td>
<td>11.9</td>
<td>8.7</td>
<td>9.3</td>
<td>--</td>
<td>56</td>
<td>6</td>
<td>10.1</td>
<td>23:1</td>
<td></td>
</tr>
<tr>
<td>6**</td>
<td>50.1</td>
<td>20</td>
<td>12.2</td>
<td>20.5</td>
<td>19:1</td>
<td>50.1</td>
<td>8.5</td>
<td>13.5</td>
<td>19:1</td>
<td></td>
</tr>
<tr>
<td>7**</td>
<td>74.7</td>
<td>13.2</td>
<td>7</td>
<td>3.1</td>
<td>58:1</td>
<td>62.2</td>
<td>13.4</td>
<td>21.3</td>
<td>23:1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>54.6</td>
<td>13.8</td>
<td>5.7</td>
<td>14.7</td>
<td>23:1</td>
<td>64.4</td>
<td>7.4</td>
<td>20.8</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>70.0</td>
<td>11.9</td>
<td>3.7</td>
<td>10</td>
<td>--</td>
<td>71.2</td>
<td>6.3</td>
<td>12.1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

*Raw compost windrow failed to reach full maturity.

**Raw compost sample collected after composting process had already been initiated.

Year 1 Data Observations:

A. During the composting process we anticipated that moisture and nitrogen levels would decrease and phosphorous/potassium levels/C:N ratios would increase. Compost windrows that fully matured during the sampling period typically demonstrated these trends.

B. Compost windrows that failed to mature or those not sampled early in the composting process did not reflect the anticipated results. Sampling errors (too few subsamples) may have also contributed to data inconsistencies.
2019 Yahara WINS Manure Composting Grant Agreement with The Yahara Pride Farms

This Grant Agreement (the “Agreement”) is made and entered into this _____ day of ______________ 2019, by and between the Yahara Watershed Improvement Network (the “Yahara WINS”) and Yahara Pride Farms (the “Yahara Pride”).

Recitals

a. Yahara WINS is pursuing an approach to address reductions of phosphorus in the Yahara Watershed through an Adaptive Management project.

b. Yahara Pride is a farmer-led, not-for-profit organization working to improve soil and water quality.

c. Yahara Pride has proposed conducting a solid manure composting project. A copy of the proposal is included as Attachment A. Goals of this project include demonstrating the viability of solid manure composting; reducing application of solid manure during winter months and other critical runoff periods; and redistributing manure from fields that are high in phosphorus to fields that are phosphorus deficient.

d. Yahara WINS desires to support the solid manure composting project, with the ultimate goal of reducing phosphorus losses in the Yahara Watershed.

AGREEMENT

Therefore, Yahara WINS and Yahara Pride (collectively the “Parties” and each individually a “Party”) agree as follows:

1. Scope of Work. Yahara Pride shall perform the following services:

- Engage a total of at least 12 farms to participate in the composting project, two of which will be farms that meet the definition of a Concentrated Animal Feeding Operation (CAFO).
- Supply the equipment and personnel to conduct composting operations and spread the finished compost.
- Conduct all required nutrient analysis associated with the composting project.
- Participate in communication and outreach efforts, including development of communication materials such as fact sheets and newsletters on an “as needed” basis so that information regarding the composting project can be broadly shared throughout the Yahara Watershed.
- Perform all other services that are explicitly identified or implied in Attachment A.
- Provide all items specified in Section 5 of this Agreement.

2. Term of Agreement. This Agreement covers a one (1) year period beginning January 1, 2019 and ending December 31, 2019.
3. **Modification of the Agreement.** The terms of this Agreement, including Attachment A, may be modified by written agreement between the Parties.

4. **Funding**
 a. Yahara WINS agrees to make available $56,000 to support 2019 operational costs of the project. This funding level is contingent on Yahara Pride having a **minimum of 2,135 cubic yard** of windrowed manure being managed under this project in 2019. Yahara WINS reserves the right to proportionately reduce the level of funding available if the quantity of windrowed manure being managed is less than 2,135 cubic yards.

 b. Yahara Pride agrees to return any unused funds to Yahara WINS at the end of the Term of Agreement or in the event that the Yahara Pride is dissolved or no longer has legal standing prior to the end of the Term of Agreement

5. **Deliverables**
 a. Yahara Pride agrees to provide Yahara WINS with an annual report on or before March 15, 2020. The report will include the following:
 - A general description of activities conducted during the previous calendar year.
 - All relevant data related to compost quantity and quality.
 - Number of farms and location of farms participating in the project.
 - Estimated change in the phosphorus index (PI) and changes in soil loss on a field by field basis using SNAP-Plus, organized by TMDL stream reach. Both annual and rotational changes in PI shall be reported.
 - Unit cost information for phosphorus reduction, express as $/pound of phosphorus reduction.
 - Unit cost information for the composting operation express as $/cubic yard of finished compost and/or other appropriate metrics.
 - Educational and outreach activities conducted in support of this project.

 b. Yahara Pride agrees to provide Yahara WINS with a brief semi-annual progress report on or before **September 30, 2019.**

 c. Yahara Pride agrees to attend Yahara WINS meetings and meetings that other funding agencies may jointly hold on an “as needed” basis for the purpose of providing project information updates.

6. **Payment**
 a. Yahara WINS agrees to make payments as follows to the Yahara Pride Farm Conservation Board in consideration of and subject to all of the conditions above: Payments will be made as follows:
 - $11,200 upon written notification to Yahara WINS that Yahara Pride has received commitments from a minimum of 12 farms (generating the minimum total of 2,135 cubic yards of windrowed manure as stated in Section 4. above) to participate in the project.
 - $11,200 by April 30, 2019
 - $11,200 by July 30, 2019
 - $11,200 upon receipt of the 2019 semi-annual progress report
 - $11,200 upon receipt of the 2019 annual report
b. Yahara WINS reserves the right to reduce the payment amounts proportionately if the volumes of windrowed compost are less than the minimum volumes specified in Section 4.

7. **Modification of the Agreement.** The terms of this Agreement may be modified if agreed to in writing by Yahara WINS and Yahara Pride.

8. **Notice.** Notices under the Agreement shall be considered complete when transmitted by email or U.S. Postal Service letter as set forth below:

If to Yahara WINS: Yahara WIN Executive Committee President
1610 Moorland Road
Madison, WI 53713
Email Address: marting@madsewer.org

If to Yahara Pride: Yahara Pride Board Chair
229 Douglas Drive
Brooklyn, WI 53521
Email Address: jeff.endres@yaharapridefarms.org

9. **Complete Agreement.** This agreement constitutes the complete and entire agreement between the parties and supersedes any previous communications, representations, or agreement, whether oral or written, with respect to the subject matter hereof.

For the Yahara Pride Farms:

_________________________ ______________________
Jeffrey Endres Date
Chair-Yahara Pride Farms

For Yahara WINS:

_________________________ ______________________
Martin Griffin Date
Yahara WINS Executive Committee President

_________________________ ______________________
Jeffrey S. Rau Date
Yahara WINS Executive Committee Treasurer
The Manure Distribution Project:
Expanding the Use of Composted Manure on Dairy Farms in the Yahara Watershed

Submitted to Dane County, Yahara WINS and Clean Lakes Alliance

by

Yahara Pride Farms
Submitted to Dane County, Yahara WINS and Clean Lakes Alliance

by

Yahara Pride Farms

Background:

Yahara Pride Farms (YPF) is a farmer-led non-profit organization that evaluates and promotes management techniques and technologies that can reduce phosphorus loss to surface waters in the Yahara Watershed. Over the past 5 years, YPF has gained national recognition for its efforts to improve soil health and water quality, through the adoption of many innovative management practices including composting.

Windrow composting (controlled decomposition by piling organic material in rows and turning regularly to aerate) is an ancient and relatively cost-effective method of processing animal manures. Composting can make manure nutrients easier to handle and transport. Although composting does not reduce phosphorus from manure, manure windrows dry down and decrease in volume by approximately 50% through the aerobic oxidation of organic materials. The resulting final product is dryer, easier to spread and has a higher concentration of phosphorus and other plant nutrients. Compost also is a valuable resource with market potential, used by farmers, landscapers, nursery managers, greenhouses, engineers and road-building contractors to improve soil fertility, health and structure.

In 2015, YPF received a USDA Farmer Rancher SARE grant to begin to evaluate the benefits and economic opportunities of windrow composting solid heifer dairy manure. On a dairy farm heifers are typically housed in separate pens where they are fed and cared for until they reach breeding age. This solid manure, or “bedding pack,” (approximately 20-25% of a total farms manure) is managed separately from the liquid manure produced by lactating dairy cows (often stored in concrete tanks and spread in the spring and fall). A convenient way to begin composting is via headland stacking; piling manure on the soil at the edge of a crop field. Often these areas of the field are lower in yield due to tractor compaction.

Heifers that are six months and younger are typically housed in group pens and bedded with corn stalks, straw, wood shavings or sand. These pens are typically cleaned daily or weekly and the bedding pack manure is spread directly (not stored) onto cropland. Manure that is spread in the winter months can result in increased P loads to surface water when the snow melts.

Results from the SARE grant showed promise that composting heifer bedding pack manure, was a feasible practice and provided an alternative for winter-applying solid heifer manure.

Update:

For the last two years, three members of Yahara Pride Farms, with higher concentrations of livestock, have been working with UW Madison on a research project (through grant funding secured by Clean Lakes Alliance via the Lake Michigan Fund) to determine whether composting can lead to reductions in phosphorus runoff loads from dairy manure.

The study evaluated the phosphorus from the heifer bedding pack manure spread to cropland versus composted bedding pack manure.
While phosphorus does not disappear, preliminary results show that phosphorus from composted dairy manure does appear to be held in a less soluble form. The proportion of total phosphorus that was 20% in finished compost (week 12) versus 40% at week one. Additionally, one farm, using gypsum wallboard in their windrow, had only 5% of its total phosphorus as water soluble phosphorus.

In addition, compared to raw manure, compost offers farmers additional flexibility for land application and allows greater precision to target application to fields where P may be low. The final product is drier and easier to manage. During the composting process, manure windrows dry down and decrease in volume by approximately 50% reducing hauling costs. In addition, compared to raw manure, it is less “hot” (containing less nitrogen) and can be spread onto alfalfa fields without damaging the growing plant tissue.

To manage compost windrows effectively, they should be turned weekly. This is accomplished by use of a “compost turner,” a large piece of equipment that straddles the windrow. As the windrow is turned, oxygen is added, and waste gases are allowed to vent, speeding decomposition. For the research project, YPF farmers rented a compost turner owned by a small company that circulates across the state. This meant that scheduling weekly turns for all three farmers was not possible resulting in a less efficient composting process.

In 2017, Jeff Endres, YPF President and co-owner of Berryridge Farms decided that if composting solid manure in the Yahara Watershed was going to advance, farmers needed more reliable access to a compost turner. Jeff decided to contract with a local welding company to build a compost turner that could be made available to farmers within the Yahara watershed. Compared to a traditional turner, this turner is uniquely designed and engineered, allowing for a complete turn in a short amount of time. Its paddles are grooved and designed to aggressively aerate the windrow. The turner was also designed so that it was entirely mobile, it fits on a variety of tractors, is road legal and can easily travel from farm to farm to encourage equipment sharing. The turner was designed by Jeff and others working on the project and he and his family financed the entire project at a cost of $100,000.

Next steps, 2017-2019:

The feasibility results from the composting study on these three farms led to the headland stacking and composting solid manure cost share, initiated in 2017. Yahara Pride Farms would like to expand this incentive program to farmers who have to clean out lots with solid manure during critical runoff periods. The primary environmental benefit of composting is to reduce the acreage of winter manure which is highly vulnerable to runoff and to redistribute the manure from fields that are high in P to fields that are P deficient. By having a compost turner available locally, we can offer interested farmers, timely turning of composted windrows, which will encourage additional farms to begin composting manure. We will also test the completed compost material for nutrient value including water soluble phosphorus levels (fraction of P that is most easily lost to the environment).

The goals of this program are to reduce the risk of phosphorus loss by:
- Offering an incentive to farmers for stacking manure and not applying it during this critical runoff period,
- Working with these farms to actively transform solid manure into compost, which reduces soluble phosphorus levels,
- Establishing a composting turning schedule where the solid manure is turned on a routine basis to insure adequate heating for pathogen reduction,
- Work with each of these farms on reloading and spreading manure during a low risk runoff period.
• Evaluate the benefits of using composted manure solids as a source of nutrients for growing crops in the Yahara Watershed.

In 2018 we will target the recruitment of 9 farms in the Yahara Watershed who house animals on a bedded pack to utilize temporary composting and avoid winter application of bedpack manure. Yahara Pride Farms will seek two permitted (CAFO) farms to participate in this study to determine the benefits of composting vs. placing the manure into a manure storage facility. Yahara Pride Farms data collected over the past two years has documented the benefits of manure composting for both crop production and water quality protection.

For 2019 3 additional farms will be recruited to demonstrate bedpack manure composting increasing the total number of participating farms to 12.

The only responsibility the farmer is create the initial manure windrow utilizing the minimum size and location criteria provided by Yahara Pride Farms. Yahara Pride Farms will facilitate the compost turning (aeration), sampling and land application.

Water Quality Benefits:

Calculating the predicted reductions in phosphorus loss from headland stacking and composting during critical runoff periods can be accomplished using the SNAP+ program by comparing the risk of a manure application in the winter (surface applied) and in the spring (incorporated). The predicted reductions in phosphorus loss are shown in table 1.

The information contained in Table 1 was generated from a farm that cooperated in the headland-stacking program in 2016. This farm stacked about 500 tons of solid dairy manure on a site approved for stacking. If the manure had been applied to cropland during the critical runoff period, the application would have covered about 50 acres.

As shown in table 1, staking manure during the critical runoff period reduced the estimated average loss of phosphorus by about 2 pounds per acre. Headland stacking showed a greater reduction in the risk of phosphorus loss than any other single practice. It is also important to note that headland stacking of manure during the critical runoff period is the only practices where soluble phosphorus losses are the dominant form of phosphorus reduction.

The predicted reductions in soluble phosphorus from each of the three fields in this study were two pounds per acre.

Manure application rates were the same on each field, the only variable was whether manure was spread during the winter on frozen and/or snow covered ground or during the spring and incorporated within 72 hours. This one operation stacking just 500 tons of manure reduced the predicted risk of phosphorus loss to nearby surface water by 107.3 pounds.

Practices that reduce losses of soluble phosphorus are of particular importance because once phosphorus is in runoff water there is little that can be done to remove it prior to reaching nearby surface water. Most conservation practices are designed to capture and slow water running off of fields so that particulate soil particles fall out of the runoff and remain in the buffers settling basins and wetlands. However, soluble phosphorus is not tied to particles and therefore flows with the water. Keeping soluble phosphorus out of runoff is a critical factor in reducing the overall phosphorus loads to the Madison chain of lakes.
This proposal is targeting 9 farms with an average of 500 tons of manure composted per farm. Using the average application of 10 tons per acre for pack manure this mean that each farm will not be spreading raw manure on about 50 acres. The project will reduce the amount of raw manure applied to 450 acres of cropland in 2018 and 600 acres in 2019. Using the phosphorus reduction estimates generated from the cooperating farm in 2016 of 2 pounds of phosphorus reduced, these means that the project could reduce the risk of phosphorus loss by about 900 pounds in 2018 and 12,000 pounds in 2019. An analysis of the effects of using compost versus applying bedded pack on an operation with 427 acres of cropland in 2017 showed an estimated reduction of about 350 lb of phosphorus with the compost. This reduction was primarily a result of being able to apply compost at lower runoff risk times to lower runoff risk fields. Using the compost, the producer was able to make spring and summer applications to established alfalfa fields that needed phosphorus and potassium.

Table 1. Change in Phosphorus loss from headland stacking/composting solid dairy manure

<table>
<thead>
<tr>
<th>Acres</th>
<th>Soil Type</th>
<th>Soil Symbol</th>
<th>Slope</th>
<th>Soil Test P PPM</th>
<th>Rotat. PI</th>
<th>Annual PI</th>
<th>Part. PI</th>
<th>Soluble PI</th>
<th>Rotat. PI</th>
<th>Annual PI</th>
<th>Part. PI</th>
<th>Soluble PI</th>
<th>Annual P change per acre</th>
<th>Annual P change for field</th>
<th>Average Annual P Change/Acre</th>
<th>Total Phosphorus Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6</td>
<td>Dodge</td>
<td>DnC2</td>
<td>9%</td>
<td>47</td>
<td>6</td>
<td>3</td>
<td>0.6</td>
<td>2.0</td>
<td>6</td>
<td>1</td>
<td>0.5</td>
<td>0.8</td>
<td>2.1</td>
<td>28.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.2</td>
<td>Plato</td>
<td>PkC2</td>
<td>9%</td>
<td>22</td>
<td>2</td>
<td>5</td>
<td>0.2</td>
<td>2.3</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>2.1</td>
<td>46.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>Dresden</td>
<td>DnC2</td>
<td>9%</td>
<td>74</td>
<td>3</td>
<td>4</td>
<td>1.6</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>1.4</td>
<td>0.5</td>
<td>2.2</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fields</td>
<td></td>
</tr>
<tr>
<td>50.4</td>
<td>Total Acres</td>
<td></td>
<td>2.13</td>
<td>107.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Farmer Benefits:

Why would farmers be interested in cooperating in this project? First because most farmers understand that spreading pack manure on melting snow is not the best way to utilize the nutrients in the manure. They are stuck in a position of having to clean the lots for animal health, and not having the time or resources to double handle the manure. This project increases the amount of nutrients available for crop production and eliminates the additional cost of doubling handling stacked manure.

This proposal provides farmers with the following benefits:

- Farmer is responsible to create the initial stack of manure,
- YPF will supply the equipment and personnel to turn the pile until acceptable compost is created,
- YPF will supply the equipment and personnel to spread the compost,
- YPF will have staff conduct nutrient analysis on the initial and final products,
- Composted manure can be applied to hay,
- Pathogens in manure are greatly reduced through the composting process,
- Compost contains higher concentrations of nutrients and less moisture,
- Compost has more flexibility for land applications and/or selling off the farm,
- Composted manure can be a source of bedding,
- Phosphorus in the manure is in a more stable state than raw manure.

Farmers are looking for ways to improve the handling and the application of solid manure and composting provides many great benefits. Composting also reduces the volume of manure to be handled. The alternative to composting solid manure is constructing an approved stacking pad for storage during the spring and summer months and double handling the product.

Budget Request:

We are seeking $50,000 in capital funds for 2017 to cost share the design and construction of a compost turner, which will be rented to the Yahara Pride Farms organization to demonstrate manure composting as a viable manure handling option with the long-term goal of expanding the number of farms composting manure in the Yahara Watershed (Table 2.) We are seeking an additional $98,400 in 2018-2019 (Total $148,400) to implement the practice in on 9 farms, (2 CAFO’s and 7 small to medium sized farms) in 2018 and a total of 12 farms in 2019. Participating farmers will be paid $5 for each cubic yard of raw manure they place at the approved composting site (limit 222 cubic yards per farm). Compost will be turned weekly for them by YPF. The recruitment of small and medium farm participants will focus on operations who currently winter spread bed pack manure. Successful adoption of manure composting by these farms will reduce the amount of phosphorus reaching surface waters in the Yahara River watershed. The CAFO participants will focus on adapting manure composting in a large scale animal production setting. These farms do not normally winter apply manure and will focus on the ability of manure composting to allow more efficient phosphorus distribution across the farms cropland base.

Table 2. Budget Request: 2017-2019